Skip Nav Destination
Close Modal
Search Results for
austenite stabilization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 745
Search Results for austenite stabilization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2015
Fig. 4 Stabilization of austenite in M2 by carbon after quenching from about 1230 °C (2245 °F). Circles, austenitized at 1230 °C; squares, interpolated to 1230 °C from higher and lower temperature; triangles, austenitized at temperature shown
More
Image
Published: 01 October 2014
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006231
EISBN: 978-1-62708-163-4
... stabilization (iron-chromium) and austenite stabilization (iron-nickel). austenite stabilization binary iron phase diagrams carbon-chromium-iron isopleth eutectic system ferrite stabilization Gibbs triangle isopleth plots isothermal plots liquidus plots peritectic system phase equilibrium...
Abstract
This article describes the liquidus plots, isothermal plots, and isopleth plots used for a hypothetical ternary phase space diagram. It discusses the single-phase boundary (SPB) line and zero-phase fraction (ZPF) line for carbon-chromium-iron isopleth. The article illustrates the Gibbs triangle for plotting ternary composition and discusses the ternary three-phase phase diagrams by using tie triangles. It describes the peritectic system with three-phase equilibrium and ternary four-phase equilibrium. The article presents representative binary iron phase diagrams, showing ferrite stabilization (iron-chromium) and austenite stabilization (iron-nickel).
Image
Published: 01 October 2014
Fig. 1 Phase diagrams for categories of alloying elements in steels. (a) Austenite stabilizers, type I (e.g., Mn, Ni, Co). (b) Austenite stabilizers, type II (e.g., Cu, Zn, Au, N, C). (c) Ferrite stabilizers, type I (e.g., Si, Cr, Mo, P, V, Ti, Be, Sn, Sb, As, Al). (d) Ferrite stabilizers
More
Image
in Gas Nitriding and Gas Nitrocarburizing of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 3 Time-temperature graph for the stability of nitrogen-expanded austenite in AISI 316, based on data given by Christiansen and Somers ( Ref 3 ). The plot displays the time needed to precipitate 50% of the originally obtained S-phase structure.
More
Image
Published: 01 October 2014
Fig. 13 Lattice parameter of nitrogen- and carbon-stabilized expanded austenite (S-phase) as a function of the number of interstitial nitrogen or carbon atoms per metal atom (γ N or γ C ). Source: Ref 13
More
Image
Published: 01 October 2014
Fig. 6 Calculated isothermal stability plot of expanded austenite in AISI 304 and AISI 316 based on isochronal annealing data. The graphs show the time to reach 50% decomposition. Source: Ref 65
More
Image
Published: 01 December 1998
Fig. 36 Two representative binary iron phase diagrams, (a) showing ferrite stabilization (Fe-Cr) and (b) austenite stabilization (Fe-Ni). Source: Ref 7
More
Image
Published: 27 April 2016
Fig. 37 Two representative binary iron phase diagrams, showing ferrite stabilization (iron-chromium) and austenite stabilization (iron-nickel). Source: Ref 4 as published in Ref 5
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
.... ( Ref 1 ) first proposed an approach designated as the quenching and partitioning process to exploit novel martensitic steels containing retained austenite (Q&P steel), based on the fact that carbon can diffuse from supersaturated martensite into neighboring untransformed austenite and stabilize...
Abstract
Quenching and partitioning (Q&P) steel is a term used to describe a series of C-Si-Mn, C-Si-Mn-Al, or other steels subjected to the quenching and partitioning heat treatment process. This article discusses the Q&P steel's chemical compositions and mechanical properties, and provides an overview of the important background and product characteristics with a focus on the automotive sheet steel application. It schematically represents the continuous annealing process, consequent phase-transformation behaviors, and forming-limit curves of Q&P steels. The article describes the parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile testing at different strain levels using electron backscatter diffraction.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... peel” in forming. Annealing of austenitic stainless steels is occasionally called quench annealing because the metal must be cooled rapidly, usually by water quenching, to prevent sensitization (except for stabilized and extra-low-carbon types). Precipitation of chromium carbides can severely...
Abstract
Fabrication of wrought stainless steels requires use of greater power, more frequent repair or replacement of processing equipment, and application of procedures to minimize or correct surface contamination because of its greater strength, hardness, ductility, work hardenability and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing, hardening, and stress relieving. Stainless steels are commonly joined by welding, brazing, and soldering. The article lists the procedures and precautions that should be instituted during welding to ensure optimum corrosion resistance and mechanical properties in the completed assembly.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006995
EISBN: 978-1-62708-450-5
...-to-sulfur ratio of 20:1. Provides substitutional hardening. Manganese contributes markedly to hardenability, especially in amounts greater than 0.8 wt%. Nickel Provides substitutional hardening. Strong austenite stabilizer and forms basis of austenitic stainless steel. Improves toughness in low-alloy...
Abstract
Steels are among the most versatile materials in modifying their microstructure and properties by heat treatment. This article outlines the basic concepts of physical metallurgy relating to the heat treatment of steel. It considers the phases and microstructures of steel together with the transformations observed and critical temperatures during heat treatment. Additionally, the different types of steels, heat treatments, and their purposes are also discussed.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005990
EISBN: 978-1-62708-168-9
... describes heat treatments applied to austenitic stainless steels, namely, soaking for homogenization and preparation for hot working; annealing to remove the effects of cold work and to put alloying elements into solid solution; and stress relieving. It provides information on the stabilizing anneal process...
Abstract
This article provides information on the metallurgy of austenitic stainless steels, and the formation of their intermediate phases (Sigma, Chi, and Laves). It discusses sensitization, a major problem associated with the austenitics, and solutions to avoid the problem. The article describes heat treatments applied to austenitic stainless steels, namely, soaking for homogenization and preparation for hot working; annealing to remove the effects of cold work and to put alloying elements into solid solution; and stress relieving. It provides information on the stabilizing anneal process, which is conducted on stabilized alloys, and discusses the metallurgical characteristics of austenitic stainless steels that may affect the selection of a stress-relieving treatment and prevention of stress corrosion by stress relieving. The article also discusses the heat treatments applied to duplex stainless steels, which involve soaking and annealing, achieving the austenite-ferrite balance, precipitation of intermetallics, and alpha prime precipitation.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005959
EISBN: 978-1-62708-168-9
... by a discussion on physical metallurgy, including crystallographic identity, thermal stability and decomposition, nitrogen and carbon solubility in expanded austenite, and diffusion kinetics of interstitials. It provides a description of low-temperature nitriding and nitrocarburizing processes for primarily...
Abstract
Low-temperature surface hardening is mostly applied to austenitic stainless steels when a combination of excellent corrosion performance and wear performance is required. This article provides a brief history of low-temperature surface hardening of stainless steel, followed by a discussion on physical metallurgy, including crystallographic identity, thermal stability and decomposition, nitrogen and carbon solubility in expanded austenite, and diffusion kinetics of interstitials. It provides a description of low-temperature nitriding and nitrocarburizing processes for primarily austenitic and, to a lesser extent, other types of stainless steels along with practical examples and industrial applications of these steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001008
EISBN: 978-1-62708-161-0
... resistance, and wear resistance. Figure 1 shows the iron-carbon phase diagram and the changes that carbon induces in the phase equilibria of pure iron. Carbon is an austenite stabilizer and expands the temperature range of stability of austenite. Its solubility is much higher in austenite (a maximum...
Abstract
This article describes microstructures and microstructure-property relationships in steels. It emphasizes the correlation of microstructure and properties as a function of carbon content and processing in low-alloy steels. The article discusses the iron-carbon phase diagram and the phase transformations that change the structure and properties at varying levels of carbon content. Microstructures described include pearlite, bainite, proeutectoid ferrite and cementite, ferrite-pearlite, and martensite. The article depicts some of the primary processing steps that result in ferrite-pearlite microstructures. It shows the range of hardness levels which may be obtained by tempering at various temperatures as a function of the carbon content of the steel. To reduce the number of processing steps associated with producing quenched and tempered microstructures, new alloying approaches have been developed to produce high-strength microstructures directly during cooling after forging.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005979
EISBN: 978-1-62708-168-9
.... Stabilizing treatments, namely, stabilizing by tempering and stabilizing by cold treatment are used to minimize dimensional changes that occur following heat treatment. chemical composition dimensional change distortion heat treatment machining martempering retained austenite tool steel...
Abstract
The design of a tool-steel part directly affects the susceptibility to shape distortion on heating and cooling. This article provides information on the selection of chemical composition and the effect of composition on size distortion. It explains the various factors considered to control distortion in tools steels, namely, design, initial condition, machining procedure, and heat treatment. Distortion can occur both during and after heat treatment. The article discusses the chief ways to precisely control the extent of distortion by heat treating and auxiliary mechanical methods. Stabilizing treatments, namely, stabilizing by tempering and stabilizing by cold treatment are used to minimize dimensional changes that occur following heat treatment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003111
EISBN: 978-1-62708-199-3
... on high alloy content, and resistance to softening depends on the initial microstructure plus the stability of the carbon-containing phase. Heat-resistant irons are usually ferritic or austenitic as-cast; carbon exists predominantly as graphite, either in flake or nodular form, which subdivides heat...
Abstract
Alloy cast irons are casting alloys based on the Fe-C-Si system that contain one or more alloying elements added to enhance one or more useful properties. This article discusses the composition of different types of alloy cast iron, including white cast irons, corrosion-resistant cast irons, heat-resistant cast irons, and abrasion-resistant cast irons. It provides information on the effect of the alloying element on their high-temperature properties. The article also discusses the microstructure and mechanical properties of alloy cast irons.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005989
EISBN: 978-1-62708-168-9
... of austenite, which transforms to martensite if quenched. This makes them quasi-martensitic alloys, and so they must be treated accordingly. In contrast, the interstitial carbon and nitrogen are removed from solution as a stable precipitate in the stabilized ferritic stainless steels alloys, which makes them...
Abstract
Ferritic stainless steels are essentially chromium containing steel alloys with at least 10.5% Cr. They can be grouped based on their chromium content: low chromium (10.5 to 12.0%), medium chromium (16 to 19%), and high chromium (greater than 25%). This article provides general information on the metallurgy of ferritic stainless steels. It describes two types of heat treatments to avoid sensitization and embrittlement. They are annealing and stress relieving. The article also provides information on casting and stabilization of ferritic stainless steels to avoid precipitation of grain boundary carbides.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001410
EISBN: 978-1-62708-173-3
... a balance of alloying additions that stabilize the austenite phase from elevated to cryogenic temperatures. Because these alloys are predominantly single phase, they can only be strengthened by solid-solution alloying or by work hardening. The exceptions are the precipitation-strengthened austenitic...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This article reviews the compositions of standard and nonstandard austenitic stainless steels. It summarizes the important aspects of solidification behavior and microstructural evolution that dictate weld-metal ferrite content and morphology. The article describes weld defect formation, namely, solidification cracking, heat-affected zone liquation cracking, weld-metal liquation cracking, copper contamination cracking, ductility dip cracking, and weld porosity. It discusses four general types of corrosive attack: intergranular attack, stress-corrosion cracking, pitting and crevice corrosion, and microbiologically influenced corrosion. The article concludes with information on weld thermal treatments such as preheat and interpass heat treatments and postweld heat treatment.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
... stabilizer, more so than nickel, and will promote increased amounts of retained austenite and lower as-cast hardness. For this reason higher manganese levels are undesirable. In considering the nickel content required to avoid pearlite in a given casting, the level of manganese present should be a factor...
Abstract
The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel-chromium white irons, chromium-molybdenum irons, and high-chromium white irons. Mechanical properties for three white irons representing each of these three general groups are presented as bar graphs. The article also describes the various heat treatments of a martensitic microstructure, including austenitization, quenching, tempering, annealing, and stress relieving.
1