Skip Nav Destination
Close Modal
Search Results for
atomic packing factors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 478 Search Results for
atomic packing factors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... crystal planes and in specific directions on a slip plane. Slip does not occur along just any plane or in any direction of crystal. Instead, the plane and direction of slip within a crystal lattice depends on how the atoms are packed together. For example, slip planes are usually on either the closest...
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005412
EISBN: 978-1-62708-196-2
... is the rigid body translation. Source: Ref 2 When factors that increase the density of atomic packing in the interface act simultaneously, as shown in Fig. 5 ( Ref 2 ), the energy at the interface is minimized. These factors are: A, good local bonding (short distance between the good matching...
Abstract
This article summarizes a physical model of an interface structure and shows how the model helps in optimizing atomistic modeling studies. It presents the orientation relationship of the interface structure to define the mutual crystallographic position of adjacent crystals. The article describes the model-informed atomistic modeling of the interface structures for interpolating the results of atomistic modeling to predict the properties of interfaces. Theories to predict low-energy orientation relationships are described. The article discusses the use of the localization parameter, such as shear modulus, bonding energy, and transformations, for prediction of interface structures. It provides information on the application of the atomistic modeling of interface structure to predict interface reaction mechanisms.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002460
EISBN: 978-1-62708-194-8
... nickel-base superalloys polymers structure-property relationships THIS ARTICLE deals with the relationships among material properties (primarily mechanical properties) and material structure. The term structure is defined broadly; it relates to factors such as the arrangement of atoms (or ions...
Abstract
This article focuses on the relationships among material properties and material structure. It summarizes the fundamental characteristics of metals, ceramics, and polymers. The article provides information on the crystal structure, the atomic coordination, and crystalline defects. It discusses the relevance of the properties to design. The article describes the common means for increasing low-temperature strength and presents an example that shows structure-property relationships in nickel-base superalloys for high-temperature applications. The relationships of microstructure with low-temperature fracture, high-temperature fracture, and fatigue failure are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... Acronyms: Techniques APM atom probe microanalysis AAS atomic absorption spectrometry AEM analytical electron microscopy AES Auger electron spectroscopy; atomic emission spectrometry AFS atomic fluorescence spectrometry ATEM analytical transmission...
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0005697
EISBN: 978-1-62708-181-8
...; electrochemical potential EDS energy-dispersive spectroscopy K Kelvin AISI American Iron and Steel Institute Eq equation K stress-intensity factor et al. and others liK stress-intensity factor range AMS Aerospace Material Specification (of ETP electrolytic tough pitch (copper) Kc plane-stress fracture toughness...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.9781627081818
EISBN: 978-1-62708-181-8
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006183
EISBN: 978-1-62708-175-7
... at.% atomic percent FEM nite-element modeling atm atmosphere (pressure) Fig. gure b Burgers vector FM gure of merit bal balance FMEA failure modes and effects analysis bcc body-centered cubic ft foot bct body-centered tetragonal FTA fault tree analysis Btu British thermal unit g gram C Coulomb; heat...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001758
EISBN: 978-1-62708-178-8
... many substances, including acids, salts, gases, and organic molecules. Because the atoms constituting these materials are the same, their differences must be related to the way in which the atoms pack or bond together. The crystal structures of the two substances are shown in Fig. 1 . Fig. 1...
Abstract
The primary goal of single-crystal x-ray diffraction is to determine crystal structure and the arrangement of atoms in a unit cell. This article discusses the diffraction of light through line gratings and explains the significance of crystal symmetry, space groups, and diffraction intensities. It also addresses phase and crystallographic analysis along with related challenges, and presents several application examples highlighting various experimental techniques.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0005752
EISBN: 978-1-62708-194-8
... artificial intelligence DFM design for manufacture AMS Aerospace Material Specification DFMA design for manufacture and assembly gpd grams per denier ANSI American National Standards Institute dhcp double hexagonal close-packed gr grain ASTM American Society for Testing and diam diameter h hour Materials DIN...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... be enclosed by an envelope (heavy line). The same class-envelopes appear on all the diagrams, corresponding to the main headings in Table 1 . The density of a solid depends on three factors: the atomic weight of its atoms or ions, their size, and the way they are packed. Metals are dense because...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003254
EISBN: 978-1-62708-176-4
...⟩ or [hkl]—based on the closest packing of atoms within the crystal structure (see Fig. 6 for an example of crystallographic planes and directions) ( Ref 5 ). For example, motion will predominantly occur on {111}⟨110⟩ slip systems in fcc metals and on {110}⟨111⟩, {112}⟨111⟩, or {123}⟨111⟩ slip systems...
Abstract
Mechanical properties are described as the relationship between forces (or stresses) acting on a material and the resistance of the material to deformation (i.e., strains) and fracture. This article briefly introduces the typical relationships between metallurgical features and the mechanical behavior of metals. It explains the deformation and fracture mechanisms of these metals. Typical properties measured during mechanical testing related to these deformation mechanisms and the microstructures of metals are discussed. The article reviews the various factors that affect the deformation response of the metal: strain rate, temperature, nature of loading, stress-corrosion cracking, and presence of notches.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001293
EISBN: 978-1-62708-170-2
... for the porosity of the pack; α i is a factor to correct for the possible condensation of activator (to be discussed later); N i is the number of gram atoms of aluminum in the i th species; D i is diffusion coefficient of constituent i in cm 2 /s; P i is the partial pressure of constituent i...
Abstract
This article describes the widespread use of diffusion coatings for elevated-temperature protection of the turbine components for aircraft engines and gas turbines. The principles of pack diffusion coating, namely, aluminizing, chromizing, and siliconizing, are discussed. The article presents information on the coating formation mechanism of superalloys and explains the steps involved in a typical pack cementation process. It concludes with information on the processing procedures and properties of pack aluminized steels.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006352
EISBN: 978-1-62708-179-5
... Cast Iron Research Association El elongation BFI bright- eld illumination ESt steel electrodes B-M Beraha-martensite f feed rate, mass fraction, resonant frequency, friction BUE build-up edge factor c grain aspect ratio, speci c heat, fatigue ductility fa fraction of a phase exponent fi internal...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005772
EISBN: 978-1-62708-165-8
... FeB/Fe<sub>2</sub>B Layers during Pack Cementation Boriding That May Result in Spalling When steel surfaces are borided using the most common powder pack cementation method, boron atoms are diffused into the surface of the steel. A large concentration of boron atoms begins to build up just below...
Abstract
Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
... to a reduction in the grain boundary area and, hence, provides an alternative route for the reduction of the free energy of the system. (The energy of external surfaces may be an important factor in grain growth in thin sheets.) It is driven by the chemical potential (or curvature) difference between adjacent...
Abstract
Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted (or pressure) sintering. This article provides information on the mechanisms and theoretical analysis of sintering and focuses on the types, mechanisms, process and microstructural variables, computer simulation, stages, and fundamentals of densification and grain growth of solid-state sintering and liquid-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... or brittle overload failures and the resultant fracture morphology are influenced by various material factors from the atomic level to the bulk material level. The inherent macroscopic ductility of crystalline materials, for example, depends on factors such as the specific crystal lattice that is present...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001756
EISBN: 978-1-62708-178-8
... and information obtainable from the intensity of diffracted x-rays. Line intensity<xref rid="a0001756-t4-fn1" ref-type="table-fn">(a)</xref> Table 4 Line intensity (a) Controlled by: Types of atoms and atomic arrangement Amount of sample which can diffract Intensity correction factors...
Abstract
X-ray diffraction techniques are useful for characterizing crystalline materials, such as metals, intermetallics, ceramics, minerals, polymers, plastics, and other inorganic or organic compounds. This article discusses the theory of x-rays and how they are generated and detected. It also describes the crystalline nature of certain materials and how the geometry of a unit cell, and hence crystal lattice, affects the direction and intensity of diffracted x-ray beams. The article concludes with several application examples involving measurements on single and polycrystalline materials.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... at which transformation to ferrite or to ferrite plus cementite is completed on cooling Ar 3 temperature at which transformation of austenite to ferrite begins on cooling ASME American Society of Mechanical Engineers ASTM American Society for Testing and Materials at.% atomic percent...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006567
EISBN: 978-1-62708-290-7
... particle size distribution (PSD) data are presented, with an emphasis on the differences between count- and volume-based PSDs. The article then outlines practices for both qualitative and quantitative assessment of particle morphology. atomization particle morphology particle size distribution...
Abstract
This article provides an overview of the general methods of metal powder production. It details the primary methods for particle sizing used in additive manufacturing: sieving, laser diffraction and scattering, and digital image analysis. Methods of interpreting and understanding particle size distribution (PSD) data are presented, with an emphasis on the differences between count- and volume-based PSDs. The article then outlines practices for both qualitative and quantitative assessment of particle morphology.
Book
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.9781627081832
EISBN: 978-1-62708-183-2