Skip Nav Destination
Close Modal
Search Results for
arc stability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 649 Search Results for
arc stability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001339
EISBN: 978-1-62708-173-3
... Abstract Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing...
Abstract
Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing hardenability, promoting porosity, and producing inclusions. It proposes basicity index for welding as a measure of expected weld metal cleanliness and mechanical properties. The article discusses alloy modification in terms of slipping and binding agents, slag formation, and slag detachability. It reviews the types of fluxes for different arc welding processes, such as shielded metal arc welding (SMAW), flux-cored arc welding (FCAW), and submerged arc welding (SAW).
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005571
EISBN: 978-1-62708-174-0
... Abstract Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure...
Abstract
Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure, and properties. It provides information on the inclusions that form as a result of reactions between metallic alloy elements and nonmetallic tramp elements, or by mechanical entrapment of nonmetallic slag or refractory particles. The article reviews the considerations of flux formulation during shielded metal arc welding and flux cored arc welding (FCAW). It describes the types of fluxes used for submerged arc welding and FCAW as well as five essential groups of flux ingredients and their interactions.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Image
Published: 30 November 2018
Fig. 10 Voltage and current wave forms for alternating current welding. (a) Partial and complete rectification. dc, direct current; oc, overcurrent. (b) With arc stabilization. (c) With current balancing
More