Skip Nav Destination
Close Modal
Search Results for
arc length control
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 729
Search Results for arc length control
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
... Abstract This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal...
Abstract
This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal-transfer control.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005553
EISBN: 978-1-62708-174-0
... of arc length ( Ref 7 ). The voltage-arc length characteristic has been successfully employed in arc voltage control systems where the welding engineer specifies a desired arc voltage and a servomotor is used to vertically adjust the welding torch height with respect to the workpiece surface ( Ref 8...
Abstract
This article provides an overview of the methods used to control aspects of the arc welding process and research associated with the development of closed-loop feedback control of the process. Successful implementation of a closed-loop feedback control system requires sensing, modeling, and control. The article describes the commonly applied sensing techniques for arc welding control: arc sensing and nonimaging and imaging optics. It reviews the physics-based, empirically-derived, and neural network models for arc welding control. The article also discusses the research and development activities that attempt to extend the commercial, welding process controllers, namely, adaptive control, intelligent control, multivariable control, and distributed, hierarchical control.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001485
EISBN: 978-1-62708-173-3
... hose supplying the cable assembly that is connected to the torch body should have an inside diameter (ID) of at least 6.4 mm ( 3 8 in.). Mechanized torches with automatic arc length control should have an air-supply hose with minimum ID of 12 mm ( 1 2 in.). Attention should be given...
Abstract
This article describes the principles of operation, operating techniques, equipment selection, and important process variables of air-carbon arc cutting. It also provides information on the safety practices to be followed during the air-carbon arc cutting process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... between the two: an increase in voltage setting will result in longer arc length. Although the arc length is the variable of interest and the one that should be controlled, arc voltage is more easily monitored. Because of this fact, and because the arc voltage is normally required to be specified...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... reason semiautomatic GMAW generally requires lower skill as compared with SMAW or GTAW. Automatic arc length regulation is most commonly achieved through control of the welding current (amperage) to maintain a constant voltage. Arc voltage is directly related to arc length, so maintaining constant...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005621
EISBN: 978-1-62708-174-0
... length and rotates in a helical spiral under the influence of the magnetic field surrounding the arc, can occur. As it rotates, a controlled stream of droplets is transferred from the electrode tube to the weld pool over a relatively wide area. Additional increases in wire feed/current at low voltage...
Abstract
Heat and mass transfer in arc welding is normally studied from the standpoint of the weld pool and heat-affected zone. This article examines the heat and mass transfer from the arc to the base metal during the gas metal arc welding process. It also provides information on the selecting parameters for the development of welding procedures.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... of control of penetration, and weld contour. One rule is to use an arc length approximately equal to the diameter of the tungsten electrode. Welding speed and frequency of adding filler metal are dependent on the skill and preference of the welder. When using the correct current, the travel speed...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001335
EISBN: 978-1-62708-173-3
... transfer when arc length is very short. (c) High-speed photograph of cyclic shorting of arc by the electrode during metal transfer to weld pool. (d) High-speed photograph of violent arc reignition with associated spatter When all other parameters are held constant, the metal transfer mode...
Abstract
This article provides information on heat and mass transfer from the arc to the base metal in the gas-metal arc welding (GMAW) process. It discusses the development of welding procedures and the general operation of the process. The issues described in this article include the: total heat transferred to the base metal; partitioning of heat transfer between the arc and the molten electrode droplets; transfer modes of the droplets; role of the arc in droplet transfer; and simple model for welding procedure development based on an understanding of heat and mass transfer to the base metal.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... contains a means for holding and moving the welding torch as well as the workpiece. Because arc voltage is an essential variable in GTAW and is proportional to arc length, voltage feedback devices are often used with motorized torch holders to control the arc length. Narrow Groove Welding Narrow...
Abstract
The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001360
EISBN: 978-1-62708-173-3
... to this process regulates the arc length and arc dwell time. After an arc is struck, the stud weld end and the workpiece surface are brought to the proper temperature for joining and, after a controlled period of time, the two heated surfaces are brought together under pressure, creating a metallurgical bond...
Abstract
Stud arc welding (SW), also known as arc stud welding, is a commonly used method for joining a metal stud, or fastener, to a metal workpiece. This article serves as a basic information source for those interested in accomplishing one-sided, no-hole attachment of metal fasteners. It schematically illustrates the basic equipment used for stud arc welding and describes the operation of the welding process. The article discusses several specific applications that lend themselves to special variations of the stud arc welding technique. It concludes with information on quality control, qualification, and inspection of stud-welding.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005555
EISBN: 978-1-62708-174-0
... that is drawn between the two. Equipment that is unique to this process regulates the arc length and arc dwell time. After an arc is struck, the stud weld end and the workpiece surface are brought to the proper temperature for joining and, after a controlled period of time, the two heated surfaces are brought...
Abstract
This article serves as a basic information source for those interested in accomplishing one-sided, no-hole attachment of metal fasteners. The stud arc-welding process is a substitute for fastening procedures such as drilling and tapping, bolting, and self-tapping screws. The article describes the operating principle of, and the tooling and equipment used for, the welding process. It contains tables that present information on the mechanical properties of aluminum, stainless steel, and low-carbon steel stud arc welded fasteners. The article details the different tests conducted to ensure the quality of stud arc-welded fasteners. It concludes with information on safety precautions to be followed in the welding process.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
... VOID vacuum oxygen induction L length rem remainder lb pound RF radio frequency decarburization LBE lance bubble equilibrium s second LF ladle furnace S applied stress vol volume LF/VD-VAD ladle furnace and vacuum arc SAE Society of Automotive Engineers SAW submerged arc welding vol% volume percent...
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
... Abstract Electric arc cutting is used on ferrous and nonferrous metals for rough severing, such as removing risers or scrap cutting, as well as for more closely controlled operations. This article describes the operating principles, equipment selection, process variables, and safety measures...
Abstract
Electric arc cutting is used on ferrous and nonferrous metals for rough severing, such as removing risers or scrap cutting, as well as for more closely controlled operations. This article describes the operating principles, equipment selection, process variables, and safety measures recommended for plasma arc cutting and air carbon arc cutting. Special applications of electric arc cutting, including shape cutting, gouging, and underwater cutting, are also discussed. The article provides information on other electric arc cutting methods, namely, the exo-process and oxygen arc cutting. It concludes with information on the seldom-used electric arc cutting methods, such as shielded metal arc cutting, gas metal arc cutting, and gas tungsten arc cutting.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... the cathode and the anode are difficult to analyze by diagnostic measurements and theoretical computation. This situation must be remedied for a thorough understanding of the process, because the process parameters control the arc discharge at the cathode, with the anode serving as the connection to ground...
Abstract
The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two cases of electron discharge at the cathode: thermionic emission and nonthermionic emission, also called cold cathode, or field emission. It schematically illustrates relative heat transfer contributions to workpiece in the GTAW process. The article provides information on the effects of cathode tip shape and shielding gas composition in the GTAW process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... on plate over 6.4 mm (0.25 in.) thickness. Types of Metals Submerged arc welding is most commonly used to join plain carbon steels. Low alloy and alloy steels can be readily welded with SAW if care is taken to properly control the heat input to prevent creating undesirable hardness in the heat...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
... the molten metal immediately behind the arc. The electrode holder contains an air flow control valve, an air hose, and a cable. The cable connects to the welding machine; the air hose connects to a source of compressed air. Cutting action in the air carbon arc process is illustrated in Fig. 16 . Fig...
Abstract
This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas cutting, plasma arc cutting, oxygen arc cutting, laser beam cutting, and air carbon arc cutting and gouging, describing their process capabilities, equipment used, operating principles and parameters, and factors affecting their efficiency.
Image
Published: 31 October 2011
selector model, which yields the nominal travel speed, current, and arc length ( v 0 , I 0 , and L 0 , respectively). Upon reaching steady state, the closed-loop control is enacted. The bead width from the process is monitored in real-time, while penetration is estimated. The measured bead width
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001353
EISBN: 978-1-62708-173-3
... to the workpiece. The arc length is controlled by the coating thickness. As the arc travels along the stationary electrode, the electrode melts and makes a deposit on the metal immediately underneath. Once the arc is started, the process proceeds to completion automatically. Electrodes that are up to 1 m (39...
Abstract
Shielded metal arc welding (SMAW), commonly called stick or covered electrode welding, is a manual welding process whereby an arc is generated between a flux-covered consumable electrode and a workpiece. This article discusses the advantages and limitations and applications of the SMAW process and describes the equipment used. It provides information on various coated electrodes used in the SMAW process, including mild and low-alloy steel-covered electrodes, stainless steel covered electrodes, and nickel and copper alloys covered electrodes. It reviews weld schedules and procedures, as well as the variations of the SMAW process. The article concludes with information on the special applications of the SMAW process and safety considerations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... to increase. Gas Metal Arc Welding Sources Modern pulsed GMAW power supplies are typically used in most HLAW applications. Pulsed GMAW sources enable advanced control of arc stability, arc length, metal transfer, droplet size, droplet frequency, and spatter generation. Modern digital power supplies...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005622
EISBN: 978-1-62708-174-0
... as those for conventional GTAW, especially when mechanized or robotic welding is employed. The only significant difference is a short arc length, preferably with arc voltage control (AVC). The use of AVC makes the technique a little more difficult to achieve when welding manually, and the deeper weld pool...
Abstract
Penetration-enhanced gas tungsten arc welding (GTAW) processes have been referred to variously as flux tungsten inert gas (TIG), A-TIG, and GTAW with a penetration-enhancing compound. This article provides a discussion on the principles of operation, advantages, disadvantages, procedures, and applications of GTAW. It also includes information on the equipment used and health and safety issues associated with GTAW.
1