Skip Nav Destination
Close Modal
Search Results for
anodic dissolution
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 354 Search Results for
anodic dissolution
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 5 Effect of current density on the negative difference for anodic dissolution of pure magnesium in various concentrations of sulfuric acid. Δ is the difference between hydrogen-evolution rate V 1 , from an electrode without current flowing, and hydrogen-evolution rate V 2 , from
More
Image
Published: 01 January 2003
Fig. 10 Evans diagram for one anodic dissolution reaction coupled (separately) to one of two different oxidant reduction reactions. (a) The two oxidant reduction reactions have similar kinetic characteristics (i.e., similar current-potential shapes). (b) The two oxidant reduction reactions
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003595
EISBN: 978-1-62708-182-5
... Abstract Electropolishing is an electrochemical process that involves anodic dissolution of a metal specimen (anode electrode) in an electrolytic cell. This article reviews the two-electrode and three-electrode systems for electropolishing. It presents the equations of anodic reactions...
Abstract
Electropolishing is an electrochemical process that involves anodic dissolution of a metal specimen (anode electrode) in an electrolytic cell. This article reviews the two-electrode and three-electrode systems for electropolishing. It presents the equations of anodic reactions and the selection criteria of electrolyte for electropolishing. The article also describes the mechanism of electropolishing and the effect of electropolishing on properties of metals.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002160
EISBN: 978-1-62708-188-7
... Abstract Electrochemical machining (ECM) is the controlled removal of metal by anodic dissolution in an electrolytic cell in which the workpiece is the anode and the tool is the cathode. This article begins with a description of the ECM system and then discusses the primary variables...
Abstract
Electrochemical machining (ECM) is the controlled removal of metal by anodic dissolution in an electrolytic cell in which the workpiece is the anode and the tool is the cathode. This article begins with a description of the ECM system and then discusses the primary variables that affect current density and the material removal rate in the ECM process. It reviews the various characteristics of electrolytes and considers tool material and design. It also provides an overview of the properties of the workpiece and defines the surface finish and accuracy of an electrochemically machined sample. The variety of work done by electrochemical machining is also exemplified in the article.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002388
EISBN: 978-1-62708-193-1
... Abstract Stress-corrosion cracking (SCC) is a cracking phenomenon that occurs in susceptible alloys, and is caused by the conjoint action of tensile stress and the presence of a specific corrosive environment. This article provides an overview of the anodic dissolution mechanisms and cathodic...
Abstract
Stress-corrosion cracking (SCC) is a cracking phenomenon that occurs in susceptible alloys, and is caused by the conjoint action of tensile stress and the presence of a specific corrosive environment. This article provides an overview of the anodic dissolution mechanisms and cathodic mechanisms for SCC. It discusses the materials, environmental, and mechanical factors that control hydrogen embrittlement and SCC behavior of different engineering materials with emphasis on carbon and low-alloy steels, high-strength steels, stainless steels, nickel-base alloys, aluminum alloys, and titanium alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002361
EISBN: 978-1-62708-193-1
... Abstract Corrosion fatigue refers to the phenomenon of cracking in materials under the combined actions of fatigue loading and a corrosive environment. This article focuses on the various mechanisms of corrosion fatigue, namely, hydrogen-assisted cracking, anodic dissolution, and surface energy...
Abstract
Corrosion fatigue refers to the phenomenon of cracking in materials under the combined actions of fatigue loading and a corrosive environment. This article focuses on the various mechanisms of corrosion fatigue, namely, hydrogen-assisted cracking, anodic dissolution, and surface energy reduction. It discusses the variables affecting corrosion fatigue. The effect of fatigue load frequency, environment, grain size, stress ratio, waveform, and temperature fatigue crack growth are also discussed.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006545
EISBN: 978-1-62708-210-5
... Abstract In high-strength aluminum alloys, stress-corrosion cracking (SCC) is known to occur in ordinary atmospheres and aqueous environments. This article discusses the mechanisms of SCC in aluminum alloys, providing information on two main types of SCC models: those of anodic dissolution...
Abstract
In high-strength aluminum alloys, stress-corrosion cracking (SCC) is known to occur in ordinary atmospheres and aqueous environments. This article discusses the mechanisms of SCC in aluminum alloys, providing information on two main types of SCC models: those of anodic dissolution based on electrochemical theory and those that involve the stress-sorption theory of mechanical fracture. It reviews three different categories of experiments used to compare SCC performance of candidate materials for service. The categories are tests on statically loaded smooth samples, tests on statically loaded precracked samples, and tests using slowly straining samples. The article describes SCC susceptibility and ratings of SCC resistance for high-strength wrought aluminum products, such as 2xxx, 5xxx, and 7xxx series alloys, aluminum-lithium alloys, and 7xxx alloys containing copper.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003677
EISBN: 978-1-62708-182-5
... electrolytes ( Ref 6 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ). Such oxidation leads to the formation of titanium-base oxides, hydrated complexes, or aqueous cationic species as a result of active anodic dissolution. The oxide and hydrated-complex layers function as barriers between the surrounding...
Abstract
This article provides a background of the complex relationship between titanium and its alloys with aqueous environments, which is dictated by the presence of a passivating oxide film. It describes the corrosion vulnerability of titanium and titanium oxides by the classification of oxide failure mechanisms. The mechanisms are spatially localized oxide film breakdown by the ingress of aggressive anions; spatially local or homogenous chemical dissolution of the oxide in a strong reducing-acid environment; and mechanical disruptions or depassivation such as scratching, abrading, or fretting. Titanium alloys can be classified into three primary groups such as titanium alloys with hexagonal close-packed crystallographic structure; beta titanium alloys with body-centered cubic crystallographic structures; and alpha + beta titanium alloys including near-alpha and near-beta titanium alloys. The article also illustrates the effects of alloying on active anodic corrosion of titanium and repassivation behavior of titanium and titanium-base alloys.
Image
Published: 01 January 2003
Fig. 8 Schematic showing zinc dissolution due to local corrosion of a zinc anode in a zinc-carbon battery. Source: Ref 2
More
Image
Published: 01 January 2003
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003583
EISBN: 978-1-62708-182-5
... reduction: (Eq 4) 2 H + + 2 e − → H 2 The sum of two electrochemical half-reactions, one anodic (such as Eq 1 ) and one cathodic (such as Eq 2 ), is the overall corrosion reaction: (Eq 5) M + Ox → M n + + Red An example is the dissolution of iron...
Abstract
This article provides a general introduction to the kinetics of aqueous corrosion with an emphasis on electrochemical principles. It describes the thermodynamic basis for corrosion by determining the equilibrium potentials of electrochemical reactions from the Nernst equation. A corrosion process can be controlled by the electronic conductivity of passive films when the cathodic reaction occurs on the surface of the film and by activation control of corrosion. Passivation becomes thermodynamically possible when the corrosion potential exceeds the potential corresponding to the equilibrium between a metal and one of its oxides/hydroxides. The article schematically illustrates a current-potential or polarization curve for an anodic process.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003585
EISBN: 978-1-62708-182-5
..., structure, electronic properties, and mechanical properties. The article outlines three possible processes that can form passive films: direct film formation, dissolution precipitation, and anodic oxidation of metal ions in solution. It describes the breakdown of the passive film using various models...
Abstract
This article reviews the types of passivity and presents tactics that employ passivity to control corrosion. Thermodynamics provides a guide to the conditions under which passivation becomes possible. A valuable guide to thermodynamics is the potential-pH diagram and the Pourbaix diagram. The article presents a potential-pH diagram for the iron-water system and an illustration of an idealized anodic polarization curve for a metal surface, which serves as a basis for describing the kinetics of passivation. It discusses five properties of passive films: thickness, composition, structure, electronic properties, and mechanical properties. The article outlines three possible processes that can form passive films: direct film formation, dissolution precipitation, and anodic oxidation of metal ions in solution. It describes the breakdown of the passive film using various models and highlighting the effect of alloy composition and structure.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
... resulting from cathodic hydrogen, a short crack may have to initiate by an anodic dissolution process, while propagation depends on hydrogen activity. Although there are conditions under which local corrosion or pitting may not result in crack propagation, more frequently they do lead to cracking. Three...
Abstract
Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters of SCC. It describes the phenomenological and mechanistic aspects of the initiation and propagation of SCC. The article includes a phenomenological description of crack initiation and propagation that describes well-established experimental evidence and observations of stress corrosion. Discussions on mechanisms describe the physical process involved in crack initiation and propagation. The article also includes information on dissolution models and mechanical fracture models.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003598
EISBN: 978-1-62708-182-5
... characteristics. Here, only ECG is discussed. Electrochemical Grinding As in other anodic dissolution processes, the workpiece is electrically conductive. The workpiece is usually made of a difficult-to-machine alloy, heat treated hard (≥60 HRC) material, or thermosensitive material. Electrochemical...
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001233
EISBN: 978-1-62708-170-2
... of these factors influence the machining performance (i.e., the dissolution rate, shape control, and the surface finish of the workpiece). An understanding of the kinetics and stoichiometry of anodic reactions and their dependence on mass transport conditions is therefore essential in order to optimize relevant...
Abstract
Nontraditional finishing processes include electrochemical machining (ECM), electrodischarge machining (EDM), and laser beam machining. These processes belong to nonabrasive finishing methods where surface generation occurs with an insignificant amount of mechanical interaction between the processing tool and the workpiece surfaces. This article provides information on the equipment used, applications, process capabilities, and limitations of ECM and EDM.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006499
EISBN: 978-1-62708-207-5
..., namely, salt spray, modified dye stain, acid dissolution, impedance, copper accelerated acetic acid salt spray, high-alkaline resistance, SO 2 fog, and clorox tests. aluminum anodizing sealing hot deionized water sealing hot nickel acetate sealing midtemperature sealing cold sealing...
Abstract
The sealing of the anodized aluminum is a critical process in achieving the durability and extended functionality of anodizing. This article discusses the different methods for sealing the anodic coatings produced by using sulfuric acid, namely, hot deionized water, hot nickel acetate, midtemperature, cold, and dichromate sealing. It reviews the factors that affect seal quality: immersion time, chemistry concentration, temperature, pH, water quality, coating thickness, and contaminants/dye bleeding. The article describes the various tests that are used for determining the quality of the seal, namely, salt spray, modified dye stain, acid dissolution, impedance, copper accelerated acetic acid salt spray, high-alkaline resistance, SO 2 fog, and clorox tests.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003584
EISBN: 978-1-62708-182-5
.... For these reasons, copper is not expected to corrode in acidic media or in deaerated media. Mechanisms of Anodic Processes Mechanisms of metal dissolution have been widely investigated in the literature and recently reviewed by Keddam ( Ref 12 ). Examples are given below for pure metals (iron, copper...
Abstract
Corrosion of metallic materials is governed by electrochemical kinetics, so that the general concepts developed for studying electrochemical reaction mechanisms may be applied to corrosion. This article presents the fundamental aspects of electrode kinetics. The processes of charge transfer taking place at the electrode interface within the double layer and of mass transport at the vicinity of the electrode surface are discussed. The article describes the corrosion processes, which involve anodic and cathodic reactions at specific electrode sites. Some experimental methods for devising a reliable reaction model are detailed. The article explains some reaction mechanisms for cathodic and anodic processes to illustrate the great variety of reaction mechanisms occurring at the electrode interface.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003577
EISBN: 978-1-62708-182-5
... temperature, including the relevant experimental methods. Constructive Uses of Corrosion The fundamental electrochemical reactions of corrosion, in particular anodic dissolution, can be, if they are well understood and controlled, used in a very powerful way to design and fabricate patterns on metal...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Fundamentals of Corrosion” in ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection. In this section, the thermodynamic aspects of corrosion are descried first followed by a group of articles discussing the fundamentals of aqueous corrosion kinetics. The fundamentals of gaseous corrosion are addressed next. The fundamental electrochemical reactions of corrosion and their uses are finally described.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003597
EISBN: 978-1-62708-182-5
.... In electrochemical deburring (ECD), the principle of anodic dissolution is applied to dissolve the burrs. Electrochemical deburring works on the same principle as ECM. The tool is either insulated on all surfaces except the part that is adjacent to the burrs, or a bit type of tool is used ( Ref 4 ). The tool tip...
Abstract
Specific machining processes that employ electrochemical machining technology include deburring and deep-hole drilling. This article describes the principle and applications of electrochemical deburring as well as the machine tools used in the process. The system, process capabilities, and applications of electrochemical deep-hole drilling are also discussed. The article also reviews the pulse electrochemical machining.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... to distinguish from mechanisms responsible for SCC. However, current understanding is based on variations of two basic theories: crack advance by anodic dissolution or by hydrogen embrittlement. The controlling factors in these two SCC models are: Anodic dissolution is characterized by: Grain...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
1