Skip Nav Destination
Close Modal
Search Results for
analytical modeling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 672
Search Results for analytical modeling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Image
Published: 30 June 2023
Fig. 15 Summary of analytical and numerical models used to interpret small ring tensile data. Analytical model terms are defined in (a) the elliptical ring geometry and (b) the free-body diagram used to define internal forces and moments. (c) Plane-stress finite-element model arrangement
More
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007017
EISBN: 978-1-62708-450-5
.... Depending on the situation, various modeling methods or a combination of methods can be used, including phenomenological, first principle, finite element analysis (FEA), computational fluid dynamics (CFD), and analytics. For example, if attaining a case-depth profile in a symmetric shaft or ring during...
Abstract
Mathematical models have been used for over five decades in industrial heat-treating operations. Most of these modeling efforts have emanated from academia or research institutes, with the primary approach of mathematically capturing heat-treating processes and validating quality predictions. In this article, a contrarian but more realistic scenario is considered, where two industrial problem descriptions become the starting point. The technical complexity of the industry problem has been elaborated for a deeper understanding of the issue along with elaboration of the approach and potential methods for determining a solution. Then, quantitative analyses of practical industrial problems are demonstrated. Finally, the potential shift in these approaches with the advent of Industry 4.0 is outlined.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005573
EISBN: 978-1-62708-174-0
... Abstract This article reviews the classical models for the pseudo-steady-state temperature distribution of the thermal field around moving point and line sources. These include thick- and thin-plate models and the medium-thick-plate model. The analytical solutions to the differential heat flow...
Abstract
This article reviews the classical models for the pseudo-steady-state temperature distribution of the thermal field around moving point and line sources. These include thick- and thin-plate models and the medium-thick-plate model. The analytical solutions to the differential heat flow equation under conditions applicable to fusion welding are provided. The article also provides an overview of the factors affecting heat flow in a real welding situation using the analytical modeling approach because this makes it possible to derive relatively simple equations that provide the required background for an understanding of the temperature-time pattern.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005520
EISBN: 978-1-62708-197-9
... both the benefits and drawbacks of each class. These classes include criteria functions, analytical models, continuum models, and kinetic models. The article also tabulates the criteria functions for porosity prediction. mechanical properties porosity solidification THE SOLIDIFICATION...
Abstract
There is a need for models that predict the percentage and size of porosity formed during solidification in order to effectively predict mechanical properties. This article provides an overview of equations that govern pore formation. It reviews the four classes of models, highlighting both the benefits and drawbacks of each class. These classes include criteria functions, analytical models, continuum models, and kinetic models. The article also tabulates the criteria functions for porosity prediction.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow...
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002172
EISBN: 978-1-62708-188-7
... Abstract This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article...
Abstract
This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article describes the cutting tool systems for aluminum alloys, steel, superalloys, and titanium alloys and provides an overview of the alternative cutting tool geometries for increasing tool life. It highlights the factors considered by companies planning to employ high-speed machining systems and concludes with information on the applications of high-speed machining.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005882
EISBN: 978-1-62708-167-2
... Abstract This article provides a discussion on the analytical modeling and simulation of residual stress states developed in steel parts and the reasons for these varied final stress states. It illustrates how the metallurgical phase transformation of steel alloys can be applied...
Abstract
This article provides a discussion on the analytical modeling and simulation of residual stress states developed in steel parts and the reasons for these varied final stress states. It illustrates how the metallurgical phase transformation of steel alloys can be applied in the simulation of induction hardening processes and the role of these phase transformations in affecting stress and distortion. Emphasis is placed on induction surface hardening, which is the main application of induction heating in steel heat treatment. The article concludes with examples of induction surface-hardened shafts and through-hardened shafts made of plain carbon steel, alloy steel, and limited hardenability steel.
Image
Published: 31 October 2011
Fig. 20 Schematic representation of the analytical keyhole model showing the cylindrical cavity of constant surface temperature moving through the plate. Source: Ref 17
More
Image
Published: 01 December 2009
Fig. 7 Schematic of analytical crack-closure model under cyclic loading. (a) Maximum stress. (b) Minimum stress. Source: Ref 22
More
Image
Published: 01 November 2010
Image
in Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 14 Comparison of measurements (data points) of the strain-rate sensitivity exponent ( m ) as a function of the homologous temperature (fraction of the melting point) for various materials and an analytical model (solid line). Source: Ref 19
More
Image
Published: 01 January 2006
Fig. 27 Comparison of measured earing profiles for deep-drawn cups of aluminum alloy 2090-T3 with predictions from finite element simulations (using two different yield functions) and an analytical model. Source: Ref 195
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003387
EISBN: 978-1-62708-195-5
..., and curling of axially loaded curved flanges. Analytical models for calculating out-of-plane stresses due to direct and indirect loads have been developed for most cases of practical interest to structural engineers. The approaches used in these models have included simple mechanics of materials...
Abstract
This article discusses the methods of analyzing the directional dependence of the mechanical properties of composites, especially those perpendicular to the major plane of the laminate. It provides a description of the common indirect load cases and direct out-of-plane load cases. The article concludes with a discussion on composite materials that are reinforced in the z-direction (also known as three-dimensional, or 3-D composites).
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
.... This methodology combines a complex regression algorithm with a simplified analytical model of the failure. Mechanics Based Model Initial attempts at predicting CAI strength were accomplished purely analytically. The model ( Ref 4 ) is a one- term Raleigh-Ritz approximation of a clamped elliptical plate...
Abstract
This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. It presents a brief introduction on the durability impact threat, damage tolerance impact threat, and other damage tolerance damage threats. The article summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms of the mechanics based model, the regression algorithm, and the semi-empirical analysis.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... that distinguish CA simulations (and other representational simulations such as Monte Carlo simulations) from mean field analytical models and models employing a homogeneous effective medium. This article examines how CA can be applied to the simulation of static and dynamic recrystallization. It describes...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... influence surface finish and tool life. A critical consideration in cutting tool design is achieving a chip that is easily removed from the cutting zone. Analytical and computer modeling offers the potential for an improved understanding of the process, which can assist in selecting optimum or near...
Abstract
This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely associated with that. The article describes the advantages and disadvantages of various finite-element modeling approaches, namely, transient models, continuous cutting model, steady-state model, hybrid model, two-dimensional models, and three-dimensional models. It discusses flow stress measurements using constitutive and inverse testing methods and reviews tool design for chip removal. The article explains the effect of tool geometry on burr formation and the effect of coatings on tool temperatures. It concludes with information on tool wear, which is an unavoidable effect of metal cutting.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005166
EISBN: 978-1-62708-186-3
... large deformation of bending and unbending. The fundamental recovery mechanism has not been well understood. For straight flanging processes, a number of analytical springback-prediction models have been proposed ( Ref 9 , 11 , 12 ). The key mechanism assumed in all those models was that the work done...
Abstract
Flanging is a process used to form a projecting rim or edge on a part. This article explores how to determine aluminum flanging limits in terms of fracture, wrinkling, and springback, and their influencing material and process parameters with examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005237
EISBN: 978-1-62708-187-0
.... ( Ref 8 ). As an example of the utility of the analytical model, calculated values of C S as a function of f S after complete solidification can be generated in a multicomponent alloy and compared to empirically measured microsegregation profiles. Equations 3 and 4 cannot be used...
Abstract
In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates the simulation of macrosegregation and microsegregation.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006971
EISBN: 978-1-62708-439-0
... widely used method to correlate SPCT forces and uniaxial creep stress relied on the use of a formulation stemming from the use of Chakrabarty’s membrane-stretching model, which has direct dependencies on the test geometry but also has been shown to be sensitive to factors such as test material...
Abstract
This article discusses several alternative mechanical test approaches that can be applied to additive manufacturing (AM) materials, both for smaller-scale assessments and for specimens that have been extracted from an AM component. This includes small punch testing, shear punch testing, and small ring testing.
1