1-20 of 477 Search Results for

aluminum-zinc-magnesium casting alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005302
EISBN: 978-1-62708-187-0
... alloys, aluminum-silicon-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article also discusses benefits of grain refinement in aluminum casting alloys. boron fatigue strength grain refinement grain size mechanical properties porosity...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006535
EISBN: 978-1-62708-207-5
... aluminum production and in shape casting. It also reviews grain refinement in aluminum-silicon casting alloys, aluminum-silicon-copper casting alloys, aluminum-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article concludes with a discussion on...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
.... Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
... alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
... ( Table 4 ) include the 2 xx.x (aluminum-copper), the 3 xx.x (Si-Mg-Cu), and the 7 xx.x (zinc-magnesium) alloy series. Temper designations are summarized in Table 5 . Table 4 Typical heat treatments for aluminum alloy sand and permanent mold castings Except where ranges are given, listed...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006254
EISBN: 978-1-62708-169-6
... alloys and the relationship between hardness and mechanical properties of the alloys. The article discusses the effects of elements such as aluminum, zinc, manganese, rare earths, and yttrium, on precipitation hardening. It describes the types of heat treatment for magnesium alloys, including annealing...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites. aluminum alloys casting copper alloys magnesium alloys melting metal-matrix...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
... hardening, and precipitation hardening, aluminum alloys can offer a very broad range of mechanical properties, enlarging their field of applications. The very high strength-to-weight ratio reached in some precipitation hardened aluminum alloys, for example, containing zinc, copper, and magnesium, means that...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... Abstract Die castings is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals. thermal conductivity aluminum aluminum alloys copper copper alloys iron iron alloys lead lead alloys magnesium magnesium alloys nickel nickel alloys tin tin alloys titanium titanium...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... not used 7 xx.x : Aluminum alloys containing zinc as the major alloying element, usually also containing additions of either copper, magnesium, chromium, manganese, or combinations of these elements 8 xx.x : Aluminum alloys containing tin as the major alloying element 9 xx.x : Currently not...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006509
EISBN: 978-1-62708-207-5
... precipitates (η′) of the MgZn 2 (η) equilibrium phase Aluminum-zinc-magnesium-copper systems Aluminum-lithium alloys with age hardening from precipitation of δ′ (Al 3 Li) Cast and wrought aluminum alloys commonly are classified either as heat treatable (precipitation-hardenable) alloys or as non...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
... casting alloys are primarily zinc-aluminum with small additions of other elements, such as copper and magnesium. Wrought zinc alloys for rolled products generally contain lead, iron, cadmium, copper, or titanium alone or in combination and usually in concentrations under 1%. The effects on microstructure...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... zinc to form, respectively, Mg 2 Si, Al 2 CuMg, or Al 2 Mg 3 Zn 3 precipitates. The main benefit of adding magnesium to aluminum-copper alloys is the improved response to heat treatment. In both cast and wrought aluminum-copper alloys, as little as 0.5 wt% Mg is effective in changing aging...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... Abstract This article addresses the general effects of the composition, mechanical treatment, surface treatment, and processing on the corrosion resistance of aluminum and aluminum alloys. There are five major alloying elements: copper, manganese, silicon, magnesium, and zinc, which...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... Etchants and etching times for zinc and zinc die-casting alloys Specimen metal Etchant (from Table 22 ) Etching time, s, for examination at: 250× 1000× Cast or rolled zinc 1 5 1 Alloy AC41A or AG40A 2 1 1 Removal of cutting oils and other greasy contaminants from aluminum...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001071
EISBN: 978-1-62708-162-7
... Abstract Addition of beryllium, up to about 2 wt%, produces dramatic effects in copper, nickel, aluminum, magnesium, gold, zinc, and other base metal alloys. This Article provides information on the chemical composition, microstructure, heat treatment, fabrication characteristics, production...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling. aluminum recycling copper recycling lead recycling...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... Abstract This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
... Magnesium Alloy Die Castings,” United States Patent 6,264,763 15. Powell B.R. et al. , Creep and Microstructure of Magnesium-Aluminum-Calcium Based Alloys , Metall. Mater. Trans. A , Vol 33A , March 2002 , p 567 – 574 16. Baba T. et al. , “Heat-Resistant Magnesium Alloy...