1-20 of 801

Search Results for aluminum-silicon-magnesium alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2016
Fig. 49 Magnesium effects on heat treated aluminum-silicon alloy (Al-10Si with magnesium) More
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006570
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg high-strength premium casting alloy 359.0. aluminum alloy 359.0 aluminum-silicon...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... propellers, motor parts, and housings Fig. 3 Die cast alloy 380.0 transmission case Aluminum-silicon-magnesium alloys including 356.0 and A356.0 have excellent casting characteristics and resistance to corrosion. Heat treatment provides combinations of tensile and physical properties...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006569
EISBN: 978-1-62708-210-5
... characteristics of Al-Si-Mg high-strength casting alloys. aluminum alloy 357.0 aluminum-silicon-magnesium alloys fabrication characteristics high-strength casting alloys mechanical properties physical properties Alloy 357.0 is similar to alloy 356.0, but it has a larger amount of magnesium, which...
Book Chapter

By Geoffrey K. Sigworth
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006507
EISBN: 978-1-62708-207-5
...-Si-Mg alloys, as well as the solution heat treatment and artificial aging of Al-Si-Cu-Mg casting alloys. aluminum casting alloys castability solution heat treatment quenching cast aluminum-silicon-copper alloys cast aluminum-silicon-magnesium alloys artificial aging THE STRENGTH...
Book Chapter

By A. Kearney, Elwin L. Rooy
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
...-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005302
EISBN: 978-1-62708-187-0
... alloys, aluminum-silicon-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article also examines the benefits of grain refinement in aluminum casting alloys. boron fatigue strength grain refinement grain size mechanical properties...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006535
EISBN: 978-1-62708-207-5
... aluminum production and in shape casting. It also reviews grain refinement in aluminum-silicon casting alloys, aluminum-silicon-copper casting alloys, aluminum-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article concludes with a discussion...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005903
EISBN: 978-1-62708-167-2
... Fig. 28 Aluminum-magnesium system. Source: Ref 34 Fig. 29 Aluminum-copper system. Source: Ref 34 Fig. 30 Aluminum-zinc system. Source: Ref 34 Wrought alloys generally are very highly alloyed; the most important alloying elements are manganese, magnesium, silicon...
Book Chapter

By Junsheng Wang
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006503
EISBN: 978-1-62708-207-5
...—are copper, magnesium, manganese, silicon, and zinc. These elements all have significant solid solubility in aluminum, and in all cases the solubility increases with increasing temperature ( Fig. 1 ). Figure 2 ( Ref 1 ) shows the principal aluminum alloys based on these elements. Note that they are used...
Book Chapter

By Jack Snodgrass, Jim Moran
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... Abstract This article addresses the general effects of the composition, mechanical treatment, surface treatment, and processing on the corrosion resistance of aluminum and aluminum alloys. There are five major alloying elements: copper, manganese, silicon, magnesium, and zinc, which...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003727
EISBN: 978-1-62708-177-1
... Abstract The most common aluminum alloy systems are aluminum-silicon, aluminum-copper, and aluminum-magnesium. This article focuses on the grain structure, eutectic microstructure, and dendritic microstructure of these systems. It provides information on microsegregation and its problems...
Book Chapter

Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006568
EISBN: 978-1-62708-210-5
... castings as a function of solution time; and room-temperature aging characteristics for aluminum alloy 356.0-T4. Growth and hardness curves for aluminum alloy 356.0-T4 are also presented. aging characteristics aluminum alloy 356.0 aluminum alloy A356.0 aluminum-silicon-magnesium alloys Charpy...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... coupled with cold work) are those in the aluminum-magnesium series, ranging form 0.5 to 6 wt% Mg. These alloys often contain small additions of transition elements, such as chromium or manganese, and less frequently zirconium, to control the grain or subgrain structure, and iron and silicon impurities...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
... Abstract This article focuses on the aging characteristics of solution and precipitation heat treated aluminum alloy systems and their corresponding types. It includes information on aluminum-copper systems, aluminum-copper-magnesium systems, aluminum-magnesium-silicon systems, aluminum-zinc...
Book Chapter

By John Banhart
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006268
EISBN: 978-1-62708-169-6
... aluminum alloys that are susceptible to age hardening contain copper, magnesium, silicon, and/or zinc as the main functional elements. Other elements, such as silver and lithium, support age hardening and are occasionally used as alloying additions. Of these four main alloying elements, only copper can...
Image
Published: 01 January 1993
Fig. 2 Effect of alloying additions on solidification crack sensitivity of selected aluminum alloy systems. (a) Aluminum-lithium. (b) Aluminum-silicon. (c) Aluminum-copper. (d) Aluminum-magnesium. (e) Aluminum-magnesium silicide. Source: Ref 1 , 3 , 4 , 5 , and 6 More
Book Chapter

By Richard B. Gundlach
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005328
EISBN: 978-1-62708-187-0
..., and aluminum-alloyed irons. austenitic ductile iron austenitic gray iron heat treatment high-alloy graphitic iron high-silicon ductile iron high-silicon gray iron nickel-alloyed austenitic iron aluminum-alloyed iron HIGH-ALLOY GRAPHITIC IRONS have found special use primarily in applications...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006581
EISBN: 978-1-62708-210-5
... hardware and architectural castings with improved foundry characteristics ( Ref 1 ). The silicon content of 511.0 is about one-third that of Alloy 512.0 and gives a more uniform appearance. Magnesium in aluminum alloys increases oxidation rates. In the molten state, magnesium losses can be significant...