Skip Nav Destination
Close Modal
Search Results for
aluminum-silicon hypoeutectic casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 118
Search Results for aluminum-silicon hypoeutectic casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006580
EISBN: 978-1-62708-210-5
... Abstract The 443 series of aluminum casting alloys have nominal silicon content of 5 wt% with various limits on iron, copper, manganese and magnesium. They are hypoeutectic AI-Si binary alloys with high ductility, very good corrosion resistance, good machinability, but only fair castability...
Abstract
The 443 series of aluminum casting alloys have nominal silicon content of 5 wt% with various limits on iron, copper, manganese and magnesium. They are hypoeutectic AI-Si binary alloys with high ductility, very good corrosion resistance, good machinability, but only fair castability, and low strength. The alloys are used in castings where above average ductility coupled with excellent corrosion resistance is needed. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of these alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005301
EISBN: 978-1-62708-187-0
... Abstract This article focuses on aspects that are important for the commercial production of castings. It discusses the modification process in hypoeutectic and eutectic alloys that differ only in the relative volume fraction of primary aluminum and aluminum-silicon eutectic. The article...
Abstract
This article focuses on aspects that are important for the commercial production of castings. It discusses the modification process in hypoeutectic and eutectic alloys that differ only in the relative volume fraction of primary aluminum and aluminum-silicon eutectic. The article explains how modification changes porosity formation in a casting. It describes the mechanisms responsible for silicon modification, as well as the modifications and changes in eutectic nucleation and the eutectic grain structure. The article reviews the usage of strontium in foundry practices. The growth of silicon eutectic is described to explain effects ancillary to silicon modification. The article also examines the effects of elements, such as phosphorus, antimony, bismuth, magnesium, boron, and calcium, on the silicon structure.
Image
Published: 01 December 2004
Fig. 16 Effect of sodium modification on microstructure of sand-cast aluminum-silicon hypoeutectic alloy 356-F. Both specimens were etched in 0.5% hydrofluoric acid and are shown at 100×. (a) As-cast structure in unmodified alloy consists of a network of silicon particles (sharp gray), which
More
Image
Published: 31 December 2017
Fig. 2 Optical images showing different eutectic silicon morphologies in (a) as-cast unmodified, (b) strontium-modified (0.0097% Sr), and (c) unmodified heat treated hypoeutectic aluminum-silicon alloys. Original magnification: 270×. Source: Ref 14
More
Image
in Aluminum Foundry Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 1 Aluminum-silicon phase diagram and cast microstructures of pure components and of alloys of various compositions. Alloys with less than 12% Si are referred to as hypoeutectic, those with close to 12% Si as eutectic, and those with over 12% Si as hypereutectic.
More
Image
Published: 01 December 1998
Fig. 3 Aluminum-silicon phase diagram and cast microstructures of pure components and of alloys of various compositions. Alloys with less than 12% Si are referred to as hypoeutectic, those with close to 12% Si as eutectic, and those with over 12% Si as hypereutectic.
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003727
EISBN: 978-1-62708-177-1
... with a eutectic reaction. The eutectic invariant is at 11.7% Si and 577 °C (1070 °F). Typical examples of hypoeutectic, eutectic, and hypereutectic aluminum-silicon commercial alloys are given in Fig. 1 ( Ref 2 ). Fig. 1 Typical microstructures of hypoeutectic, eutectic, and hypereutectic aluminum...
Abstract
The most common aluminum alloy systems are aluminum-silicon, aluminum-copper, and aluminum-magnesium. This article focuses on the grain structure, eutectic microstructure, and dendritic microstructure of these systems. It provides information on microsegregation and its problems in casting of alloys. The article also illustrates the casting defects such as macroporosity, microshrinkage, and surface defects, associated with the alloys.
Image
Published: 01 December 2004
Fig. 45 Image contrast (left) and corresponding black-and-white (b-w) detection thresholds (right) for automatic image analysis of dendrite arm size in hypoeutectic aluminum-silicon cast alloys. (a) Good contrast for automatic image analysis of dendrite outlined with α-Al + Si eutectic. 200
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005212
EISBN: 978-1-62708-187-0
... in the morphology of the silicon phase in the chemically modified alloy and the chill-cast alloy, the growth mechanism of silicon is different in the two cases. Fig. 6 Microstructure of an aluminum-silicon alloy modified with strontium. (a) At low magnification. (b) At higher magnification and deeply etched...
Abstract
This article illustrates the equilibrium phase diagram for an aluminum-silicon system, showing the metastable extensions of liquidus and solidus lines. It describes the classification and microstructure of the aluminum-silicon eutectic. The article presents the theories of solidification and chemical modification of the aluminum-silicon eutectic.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005215
EISBN: 978-1-62708-187-0
... for Gulliver-Scheil and nonequilibrium freezing with back diffusion are very similar, the enthalpy-versus-temperature curves for the two solidification paths will not differ appreciably. Binary Eutectic Systems: Hypoeutectic Aluminum-Silicon Alloys Microsegregation is discussed in terms of the behavior...
Abstract
This article discusses the two extremes of solute redistribution, equilibrium solidification and nonequilibrium Gulliver-Scheil solidification, for which solid redistribution of solute within the primary solid phase is the distinguishing parameter. The process and material parameters that control microsegregation are discussed in relation to the manifestations of microsegregation in simple and then increasingly complex alloy systems. The measurement and kinetics of microsegregation are discussed for the binary isomorphous systems: titanium-molybdenum; binary eutectic systems: aluminum-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
... of aluminum-phosphorus phases. Phosphorus also plays a role on the eutectic structure of hypoeutectic alloys, leading to its coarsening. Silicon (Si) Silicon (Si) is the major alloying element in casting aluminum alloys because it increases fluidity, castability, and hot tearing resistance, thus making...
Abstract
This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc. The article describes the microstructure of cast and wrought aluminum alloys and the various strengthening mechanisms, including solid solution, grain refinement, strain or work hardening, precipitation (or age) hardening, and dispersoid strengthening. The article explicates the tribological behavior of aluminum alloys, aluminum-base composites, and metal-matrix composites. It presents the effect of material-related parameters and external factors on wear behavior and transitions of aluminum-silicon alloys. The article also presents the most important factors affecting the dry sliding wear behavior of particle-reinforced aluminum-base composites against a steel counterface.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003769
EISBN: 978-1-62708-177-1
... with higher silicon, can be substantially improved by modification of the aluminum-silicon eutectic. No elements are known that beneficially affect both eutectic and hypereutectic phases. Modification of hypoeutectic alloys (<12% Si) is particularly advantageous in sand castings and can be effectively...
Abstract
This article focuses on the metallography and microstructures of wrought and cast aluminum and aluminum alloys. It describes the role of major alloying elements and their effect on phase formation and the morphologies of constituents formed by liquid-solid and/or solid-state transformations. The article also describes specimen preparation procedures and examines the microstructure of several alloy samples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005247
EISBN: 978-1-62708-187-0
... in hypoeutectic or eutectic aluminum-silicon alloy castings (alloys with 12% Si or less) is, on the other hand, accomplished by chemically inhibiting the usual nucleation of eutectic silicon, causing eutectic aluminum grains to nucleate first and forcing silicon to then grow between those aluminum grains, thus...
Abstract
Primary silicon in hypereutectic aluminum-silicon alloys is very hard, not only imparting improved wear resistance but also decreasing tool life during machining. This article discusses the importance of primary silicon refinement and the process of accomplishing primary silicon refinement.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
.... These are the hypoeutectic aluminum-silicon alloys containing small amounts of magnesium and/or copper. Table 1 lists compositions of common aluminum-silicon alloys. Copper is also used in some alloys as the major alloying constituent. The most popular alloy, A356.0, used for most automotive and general purpose castings...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006551
EISBN: 978-1-62708-210-5
... compressor housings, small engine crankcase, air-conditioner pistons S, sand cast; PM, permanent mold; D, die cast Developing a primary-silicon phase with suitable microstructure is accomplished in one of two ways, depending on whether the alloy is a hypoeutectic or eutectic aluminum-silicon alloy...
Abstract
Aluminum alloys are widely used in engineered components because of their excellent strength-to-weight ratio. Their use in applications requiring wear resistance is more limited. One of the main limitations of aluminum alloys is the poor tribological behavior mainly due to their relatively low hardness, which favors large plastic deformation under sliding conditions. This article discusses the classes and mechanisms of wear in aluminum-silicon alloys, aluminum-tin bearing alloys, and aluminum-matrix composites; describes the effect of material-related parameters on wear behavior of these alloys; and reviews their applications in a variety of tribological applications in the automotive industry ranging from aluminum-tin alloys for plain bearings to alloys with hard anodizing for machine elements. Methods to improve wear resistance and alloy hardness are also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... processes are those of the aluminum-silicon family. Commercial alloys span the hypoeutectic and hypereutectic ranges up to about 25% Si. In general, an optimum range of silicon content can be assigned to casting processes. For slow cooling rate processes (such as plaster, investment, and sand casting...
Abstract
This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based on the stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on foundry alloys for specific casting applications. The article concludes with a discussion on the heat treatment practices and properties of aluminum casting alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
... Aluminum-silicon phase diagram and cast microstructures of pure components and of alloys of various compositions. Alloys with less than 12% Si are referred to as hypoeutectic, those with close to 12% Si as eutectic, and those with over 12% Si as hypereutectic. The required amounts of eutectic...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003109
EISBN: 978-1-62708-199-3
... of the method of liquid treatment (level of minor elements), base and sulfur, and section thickness. Alloying Elements Alloying elements, such as copper, tin, molybdenum, and even aluminum, can be used to change the as-cast matrix of CG iron from ferrite to pearlite. Typical ranges are 0.48 to 0.9% Cu...
Abstract
This article discusses the graphite morphology, chemical composition, mechanical and physical properties, and applications of compacted graphite (CG) irons. It compares the selected properties of gray, ductile and CG irons, and lists their property requirements as per ASTM A 842. A listing of tensile properties of various CG irons produced by different melt treatment methods is also provided.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005903
EISBN: 978-1-62708-167-2
... carried out in cast steel, wrought and cast aluminum, and copper materials. aluminum alloys carbon content cast iron cast steel casting quality copper alloys desulfurization induction melting iron-carbon system magnesium nucleation oxygen content solubility MELTING IS ONE...
Abstract
Interplays of metallurgical factors, such as dissolved oxygen, carbon, and silicon content, that control the molten metal from melting to pouring, have a decisive influence on the quality of the castings. This article focuses on the magnesium treatment and desulfurization carried out during inoculation and nucleation of molten cast iron, assisting in the formation of cast iron. The different types of cast irons are gray cast iron, nodular cast iron, compacted graphite iron, malleable cast iron, and alloyed cast iron. The article provides an overview of the melt treatment processes carried out in cast steel, wrought and cast aluminum, and copper materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... that have higher silicon contents. Silicon is the alloying element that literally makes the commercial viability of the high-volume aluminum casting industry possible. Silicon contents from ∼4% to the eutectic level of ∼12% reduce scrap losses, permit production of much more intricate designs...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
1