Skip Nav Destination
Close Modal
Search Results for
aluminum-magnesium-zinc-copper-zirconium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 270 Search Results for
aluminum-magnesium-zinc-copper-zirconium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
...Abstract Abstract This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
...Abstract Abstract This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
... of the designation by a hyphen) A—aluminum B—bismuth C—copper D—cadmium E—rare earth F—iron G—magnesium H—thorium J—strontium K—zirconium L—lithium M—manganese N—nickel P—lead Q—silver R—chromium S—silicon T—tin W—yttrium X—calcium Y—antimony Z—zinc Whole numbers Letters of alphabet except I and O F...
Abstract
Magnesium and its alloys are among the most difficult metals to prepare for metallographic examination. This article describes specimen preparation processes, including sectioning, mounting, grinding, and polishing. It discusses macro and microexamination techniques as well as related etching processes, including macroetching and color etching based on polarized light enhancement. The article concludes with an overview of the effects of alloying elements, including aluminum, beryllium, calcium, copper, iron, lithium, manganese, rare earth metals, silicon, silver, strontium, thorium, tin, zinc, and zirconium.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006740
EISBN: 978-1-62708-210-5
..., bulkheads, windshield surrounds; and structural components in landing-gear bays. Plate product has excellent flatness, consistency, and low residual stress that facilitate complex machining. aluminum alloy 7097 aluminum alloy plates aluminum-magnesium-zinc-copper-zirconium alloys corrosion...
Abstract
Alloy 7097 is a quench insensitive Al-Mg-Zn-Cu-Zr alloy engineered for the most advantageous combination of strength, corrosion resistance, and fracture toughness in thick structural applications. This datasheet provides information on key alloy metallurgy of alloy 7097 and processing effects on mechanical properties of alloy 7097-T7651 plate.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006018
EISBN: 978-1-62708-175-7
..., flares, tracers, torpedoes, etc. Iron, aluminum, copper, cerium, magnesium, zinc, silicon Missile filters Nickel-base alloys Projectile rotating bands Copper, iron, brass Proximity fuze cup Nickel Rocket launcher parts Stainless steel, aluminum Solid missile fuel Aluminum...
Abstract
Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder systems, and for material substitution. They are also used in food enrichment, environmental remediation market, and magnetic, electrical, and medical application areas. This article reviews some of the diverse and emerging applications of ferrous and nonferrous powders. It also discusses the functions of copier powders and the processes used frequently for copier powder coating.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003675
EISBN: 978-1-62708-182-5
... to improve the tolerance of magnesium-aluminum alloys for all three contaminants, but it is limited to 1 to 3% Zn because of its detrimental effects on microshrinkage porosity and its accelerating effect on corrosion above 3%. For magnesium-rare earth, -thorium, and -zinc alloys containing zirconium...
Abstract
This article begins with a discussion on the corrosion characteristics of unalloyed magnesium and two major magnesium alloy systems. It shows the effects of iron and 13 other elements on the saltwater corrosion performance of magnesium in binary alloys with increasing levels of the individual elements. The article illustrates the effect of increasing iron, nickel, and copper contamination on the standard ASTM B 117 salt-spray performance of the die-cast AZ91 test specimens as compared to the range of performance observed for cold-rolled steel and die-cast aluminum alloy 380 samples. It discusses the effect of heat treating and cold working on the corrosion rates of the die-cast AZ91 alloy. The article concludes with a description on the causes of corrosion failures in magnesium alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006503
EISBN: 978-1-62708-207-5
... on the thermal expansion of aluminum Alloying element Change in alloy constant per weight percent addition (annealed temper) (a) Aluminum oxide (Al 2 O 3 ) −0.0105 Copper −0.0033 Iron −0.0125 Magnesium +0.0055 Nickel −0.0150 Silicon −0.0107 Zinc +0.0032 Chromium −0.010 (b...
Abstract
This article provides a thorough review of the physical metallurgy of aluminum alloys and its role in determining the properties and from a design and manufacturing perspective. And its role in include the effects of composition, mechanical working, and/or heat treatment on structure and properties. This article focuses on the effects of alloying and the metallurgical factors on phase constituents, structure, and properties of aluminum alloys. Effects from different combinations of alloying elements are described in terms of relevant alloy phase diagrams. The article addresses the underlying alloying and structural aspects that affect the properties and possible processing routes of aluminum alloys. It provides information on the heat treatment effects on the physical properties of aluminum alloys and the microstructural effects on the fatigue and fracture of aluminum alloys. The important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
.... It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites. aluminum alloys casting copper alloys magnesium alloys melting metal...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... with a compression component (e.g., rolling, extrusion). In terms of general alloying, the most important alloying additions are aluminum, zinc, and zirconium. Magnesium alloys themselves normally divide into two classes: Aluminum-containing alloys with or without zinc Zirconium-containing alloys...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005353
EISBN: 978-1-62708-187-0
... describes the methods of degassing aluminum, magnesium, and copper alloys. It provides information on the sources of hydrogen in aluminum and gases in copper. castings aluminum copper alloys degassing gas porosity hydrogen content gas content magnesium reliability GAS POROSITY is a major...
Abstract
Gas porosity is a major factor in the quality and reliability of castings. The major cause of gas porosity in castings is the evolution of dissolved gases from melting and dross or slag containing gas porosity. Degassing is the process of removing these gases. This article describes the methods of degassing aluminum, magnesium, and copper alloys. It provides information on the sources of hydrogen in aluminum and gases in copper.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003820
EISBN: 978-1-62708-183-2
... with temperature. At 100 °C (210 °F), the aluminum-zinc (AZ) alloys typically corrode at 0.25 to 0.50 mm/yr (10 to 20 mils/yr). Pure magnesium and alloy ZK60A corrode excessively at 100 °C (212 °F), with rates up to 25 mm/yr (1000 mils/yr). At 150 °C (300 °F), all magnesium alloys corrode excessively ( Ref 9...
Abstract
This article begins with a discussion on the environmental factors that induce corrosion in magnesium alloys. It reviews the factors that determine the severity of different forms of localized corrosion, namely, galvanic corrosion, corrosion fatigue, and stress-corrosion. The article discusses corrosion protection in magnesium assemblies and the protective coating systems used in corrosion protection practices. Protection schemes for specific applications and the production of novel magnesium alloys with improved corrosion resistance are also reviewed. The article concludes with a discussion on the corrosion of bulk vapor-deposited alloys and magnesium-matrix composites.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
...Abstract Abstract This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005334
EISBN: 978-1-62708-187-0
... to the composition is necessary. However, the magnesium-zirconium alloys contain alloying constituents that tend to be lost during each remelt operation and need to be added each time the material is remelted. Such corrections can be made by adding the pure metals themselves (such as zinc, misch metal, and so forth...
Abstract
This article focuses on the variety of alloys, furnaces, and associated melting equipment as well as the casting methods available for manufacturing magnesium castings. These methods include sand casting, permanent mold casting, die casting, thixomolding, and direct chill casting. The article discusses the flux process and fluxless process for the melting and pouring of magnesium alloys. It describes the advantages and disadvantages of green sand molding and tabulates typical compositions and properties of magnesium molding sands. The article provides information on the machining characteristics of magnesium and the applications of magnesium alloys.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005887
EISBN: 978-1-62708-167-2
...% by weight to improve grain structure. Aluminum-containing alloys are usually used for casting. Copper (C) Allows heat treatment Improves corrosion resistance Rare earths (E) Added for applications exposed to temperatures over 95 °C (205 °F) Magnesium-rare earth-zirconium alloys are common...
Abstract
This article focuses on the temperature requirements of typical nonferrous metals and their alloys of commercial importance. These include aluminum, copper, magnesium, and titanium. The article describes the thermoelectricity, photoelectricity, and capacity of aluminum alloys. In addition, it provides information on the electrical properties of copper and its alloys. The article also lists typical physical and mechanical properties of aluminum alloys at ambient temperature.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005192
EISBN: 978-1-62708-187-0
.... For example, in liquid aluminum, silicon, copper, zinc, and iron decrease hydrogen solubility, whereas lithium, magnesium, and titanium increase it ( Fig. 9 ). The effects of temperature on the solubility of hydrogen in liquid binary aluminum alloys can be represented by the general equation of the same form...
Abstract
This article reviews the solubilities of the common gases present in ferrous metals, such as cast irons, and nonferrous metals, such as aluminum, copper, magnesium, and their alloys. The kinetics of the relevant reactions, reactions during solidification, and possible methods of control or removal of the dissolved gases are discussed. The most common method for removing hydrogen from aluminum, copper, and magnesium is inert gas flushing. The article provides information on techniques to overcome gas porosity in ferrous and nonferrous metals.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
... 105 28 Zinc die-casting alloys 91 82 Silver 90 26 Magnesium alloys, wrought 82 46 Magnesium alloys, cast 80 50 Aluminum alloys, 3000 series 77 28 Rare earths 77 17 Gold 66 25 Aluminum alloys, 1000 series 44 19 Tin and its alloys 29 5 Lead and its alloys...
Abstract
This article is a comprehensive collection of tables that list the values for hardness of plastics, rubber, elastomers, and metals. The tables also list the tensile yield strength and tensile modulus of metals and plastics at room temperature. A comparison of various engineering materials, on the basis of tensile strength, is also provided.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... for low-pressure cast applications should be of the lowest possible nickel level. The low tolerance limits for the contaminants in AM60 alloy when compared to AZ91 alloy can be related to the absence of zinc. Zinc is thought to improve the tolerance of magnesium-aluminum alloys for all three contaminants...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
...Comparative corrosion and fabrication characteristics and typical applications of wrought aluminum alloys Table 1 Comparative corrosion and fabrication characteristics and typical applications of wrought aluminum alloys Alloy temper Resistance to corrosion Workability cold (e...
Abstract
Aluminum mill products are those that have been subjected to plastic deformation by hot- and cold-working mill processes such as rolling, extruding, and drawing, either singly or in combination. Microstructural changes associated with the working and with any accompanying thermal treatments are used to control certain properties and characteristics of the worked, or wrought, product or alloy. This article discusses the designation system, classification, product forms, corrosion and fabrication characteristics, and applications of wrought aluminum alloys. Commercial wrought aluminum products are divided into flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; shapes; and forgings. The article discusses factors affecting the strengthening mechanisms, fracture toughness, and physical properties of aluminum alloys, in addition to the effects of alloying on the physical and mechanical properties. Important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003748
EISBN: 978-1-62708-177-1
... high conductivity. Source: Ref 1 Electrolytic Polishing <xref rid="a0003748-ref2" ref-type="bibr">(Ref 2)</xref> Electrolytic polishing, or electropolishing, is used widely in the metallography of stainless steels, copper alloys, aluminum alloys, magnesium, zirconium, and other metals...
Abstract
Metallographic preparation of a material involves the elimination of artifacts or scratches from fine polishing and may be achieved by methods such as attack polishing, vibratory polishing, chemical polishing, electrolytic polishing, and electromechanical polishing. This article discusses the mechanism, operating procedure, advantages, and limitations of chemical and electrolytic polishing of samples for metallographic preparation. It provides information on the specimen preparation, apparatus used, and safety precautions to be followed during the polishing process. The various groups of electrolytes used in electropolishing of several metals and alloys are reviewed. The article concludes with a discussion on local electropolishing.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001074
EISBN: 978-1-62708-162-7
... by a number (separated from the third part of the designation by a hyphen) A—aluminum B—bismuth C—copper D—cadmium E—rare earth F—iron G—magnesium H—thorium K—zirconium L—lithium M—manganese N—nickel P—lead Q—silver R—chromium S—silicon T—tin W—yttrium Y—antimony Z—zinc Whole numbers Letters of alphabet...
Abstract
Magnesium and magnesium alloys are used in a wide variety of structural and nonstructural applications. This article provides information on selection and application of magnesium and magnesium alloys, mainly, casting alloys and wrought alloys. It also provides tabulated data for the composition, properties of these alloys, including compressive strength, bearing strength, shear strength, hardness, wear resistance, and fatigue strength. The article describes the selection of product forms (castings, extrusions, forgings) for structural applications which is based on mechanical property requirements, cost, availability, and fabricability. It also discusses the types of inserts used in magnesium. The article also deals with the joining of magnesium alloys by welding, adhesive bonding, and riveting. It concludes by describing the formability and machinability of magnesium and magnesium alloys, and explains the role of magnesium in design and weight reduction.