Skip Nav Destination
Close Modal
Search Results for
aluminum-lithium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 157 Search Results for
aluminum-lithium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
...-magnesium systems, aluminum-zinc-magnesium-copper systems, and aluminum-lithium alloys. aging aluminum alloys heat treatment solution heat treatment THE MAJOR ALUMINUM ALLOY SYSTEMS that are capable of precipitation hardening include: Aluminum-copper systems ( Table 1 ) with hardening from...
Abstract
This article focuses on the aging characteristics of solution and precipitation heat treated aluminum alloy systems and their corresponding types. It includes information on aluminum-copper systems, aluminum-copper-magnesium systems, aluminum-magnesium-silicon systems, aluminum-zinc-magnesium systems, aluminum-zinc-magnesium-copper systems, and aluminum-lithium alloys.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000622
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of P/M aluminum alloys (aluminum-lithium alloys) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture surface, and...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of P/M aluminum alloys (aluminum-lithium alloys) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture surface, and corrosion-fatigue crack initiation and propagation of these alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... Abstract This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006268
EISBN: 978-1-62708-169-6
... precipitates that occur in the natural aging and artificial aging of Al-Mg-Si-(Cu) alloys, Al-Mg-Cu alloys, microalloyed Al-Mg-Cu-(Ag, Si) alloys, aluminum-lithium-base alloys, and Al-Zn-Mg-(Cu) alloys. Crystal structure, composition, dimensions, and aging conditions of precipitates are detailed. Effects of...
Abstract
This article describes the effects of alloying and heat treatment on the metastable transition precipitates that occur in age hardenable aluminum alloys. Early precipitation stages are less well understood than later ones. This article details the aging sequence and characteristics of precipitates that occur in the natural aging and artificial aging of Al-Mg-Si-(Cu) alloys, Al-Mg-Cu alloys, microalloyed Al-Mg-Cu-(Ag, Si) alloys, aluminum-lithium-base alloys, and Al-Zn-Mg-(Cu) alloys. Crystal structure, composition, dimensions, and aging conditions of precipitates are detailed. Effects of reversion, duplex annealing, and retrogression and re-aging are included.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
... composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment...
Abstract
Magnesium-matrix composites (MgMCs) are very promising as structural materials because of their low density, high specific strength, and excellent castability. This article provides information on the characteristics, mechanical properties, and applications of magnesium alloys and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment, precipitation strengthening or aging, and annealing, applied to these alloys. Finally, it describes the microstructural aspects and precipitate-matrix relationships of MgMCs as well as the heat treatment methods for MgMCs.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... and 7 xx.x alloy series) Al-Zn-Mg-Cu systems (some alloys in the 7 xxx and 7 xx.x alloy series) Aluminum-lithium alloys (not listed in Table 1 but described in this section) Table 1 General designations of wrought and cast aluminum alloys See also the article “Aluminum Alloy...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
... Abstract This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die design, and...
Abstract
This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die design, and die manufacture. The article discusses the critical aspects of various manufacturing elements of aluminum alloy forging, including the preparation of the forging stock, preheating stock, die heating, lubrication, trimming, forming and repair, cleaning, heat treatment, and inspection. It concludes with a discussion on the forging of advanced aluminum materials and aluminum alloy precision forgings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003815
EISBN: 978-1-62708-183-2
... Abstract This article focuses on the various forms of corrosion occurred in the passive range of aluminum and its alloys, namely, pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion...
Abstract
This article focuses on the various forms of corrosion occurred in the passive range of aluminum and its alloys, namely, pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion-corrosion, atmospheric corrosion, filiform corrosion, and corrosion in water and soils. It discusses the effects of composition, microstructure, stress-intensity factor, and nonmetallic building materials on the corrosion behavior of aluminum and its alloys. The article also describes the corrosion resistance of anodized aluminum in contact with foods, pharmaceuticals, and chemicals.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel...
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005212
EISBN: 978-1-62708-187-0
.... Moreover, lithium, which is much smaller than the ideal radius ratio, modifies the eutectic silicon morphology when added in large concentrations to aluminum-silicon alloys ( Ref 38 ). Because of the inability of the impurity-induced twinning theory to account for these facts, research efforts that aim to...
Abstract
This article illustrates equilibrium phase diagram for the aluminum-silicon system showing metastable extensions of the liquidus and solidus lines. It describes the classification and microstructure of the aluminum-silicon eutectic. The article presents the theories of solidification and chemical modification of the aluminum-silicon eutectic.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
... Abstract This article presents a table that lists the linear thermal expansion of selected metals and alloys. These include aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc and their alloys. Thermal expansion is presented for specific temperature ranges. linear...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... and increases the modulus of aluminum alloys. In binary alloys it forms metastable Al 3 Li precipitates and combines with aluminum and copper in Al-Cu-Li alloys to form a large number of Al-Cu-Li phases. Because of its high cost relative to other alloying elements, lithium alloys have been found to be...
Abstract
The physical and mechanical properties of aluminum alloy can be improved by strengthening mechanisms such as strain hardening used for non-heat treatable aluminum alloy and precipitation hardening used for heat treatable aluminum alloy. This article focuses on the effect of strengthening mechanisms on the physical and mechanical properties of non-heat treatable and heat treatable aluminum alloys. It describes the use of the aluminum alloy phase diagram in determining the melting temperature, solidification path, equilibrium phases, and explains the effect of alloying element in phase formation.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
.... Permanent mold casting is best suited for tin, silicon, aluminum and manganese bronzes, and yellow brasses. Dies casting is well suited for yellow brasses, but increasing amounts of permanent mold alloys are also being die cast. Size is a definite limitation for both methods, although large slabs weighing...
Abstract
This article describes the casting characteristics and practices of copper and copper alloys. It discusses the melting and melt control of copper alloys, including various melt treatments to improve melt quality. These melt treatments include fluxing and metal refining, degassing, deoxidation, grain refining, and filtration. The article provides a discussion on these melt treatments for group I to III alloys. It describes the three categories of furnaces for melting copper casting alloys: crucible furnaces, open-flame furnaces, and induction furnaces. The article explains the important factors that influence the selection of a casting method. It also describes the production of copper alloy castings. The article concludes with a discussion on the gating and feeding systems used in production of copper alloy castings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003121
EISBN: 978-1-62708-199-3
... : Alloys characterizing miscellaneous compositions. The 8 xxx series alloys may contain appreciable amounts of tin, lithium, and/or iron. 9 xxx : Reserved for future use Wrought alloys that constitute heat-treatable (precipitation-hardenable) aluminum alloys include the 2 xxx , 6 xxx , 7 xxx...
Abstract
Aluminum and its alloys are used in a broad range of applications. This article discusses the primary and secondary production of aluminum and the classification system for cast and wrought products. It describes some of the more common manufactured forms, including commercial wrought aluminum products, aluminum alloy engineered castings, powder metallurgy parts, and metal-matrix composites. The article also reviews fabrication characteristics such as machining, forming, forging, and joining. It concludes with a description of the major industrial applications of wrought and cast aluminum alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
...% Cr and the maximum amount of it is in solid solution, the increase in resistivity of high-purity aluminum (2.65 μΩ ⋅ cm at 20 °C) is 0.77 × 4.00 + 0.23 × 0.18 = 3.13 μΩ ⋅ cm. The potent effects on resistivity of chromium, iron, lithium, manganese, titanium, and vanadium are apparent. Table 3...
Abstract
Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation of electrical conductivity of alloy 2024 samples as a function of aging time at different isothermal holding temperatures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003126
EISBN: 978-1-62708-199-3
... Abstract This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect of...
Abstract
This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect of temperatures on tensile strength, yield strength, and elongation, and the mechanical properly limits for aluminum alloy die forgings, non-heat-treatable and heat-treatable aluminum alloy sheets and plates, and non-heat-treatable aluminum alloy extruded wires, rods, bars, and shapes.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals, and...
Abstract
This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals, and rare earth metals is also listed.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006543
EISBN: 978-1-62708-183-2
... Abstract Density allows for conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time to thickness per unit time. This article contains a table that lists density of metals and alloys. These include aluminum, copper, iron, stainless steels, magnesium, lead...
Abstract
Density allows for conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time to thickness per unit time. This article contains a table that lists density of metals and alloys. These include aluminum, copper, iron, stainless steels, magnesium, lead, and their alloys.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
... Approximate recrystallization temperatures for several metals and alloys Metal Recrystallization temperature °C °F Copper (99.999%) 120 250 Copper (OFHC) (a) 200 400 Copper (5% Al) 290 550 Copper (5% Zn) 320 600 Copper (2% Be) 370 700 Aluminum (99.999%) 80 175...
Abstract
This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003820
EISBN: 978-1-62708-183-2
... did not occur during testing of magnesium-lithium alloys strengthened with zinc, silicon, and/or silver instead of aluminum. Iron is found in commercial magnesium alloys in small, residual amounts and, although iron is known to reduce general corrosion resistance, its effect on SCC remains unclear...
Abstract
This article begins with a discussion on the environmental factors that induce corrosion in magnesium alloys. It reviews the factors that determine the severity of different forms of localized corrosion, namely, galvanic corrosion, corrosion fatigue, and stress-corrosion. The article discusses the corrosion protection in magnesium assemblies and the protective coating systems used in corrosion protection practices. The protection schemes for specific applications and production of novel magnesium alloys with improved corrosion resistance are also described. The article concludes with a discussion on corrosion of bulk vapor-deposited alloys and magnesium-matrix composites.