1-20 of 461 Search Results for

aluminum-coated steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001279
EISBN: 978-1-62708-170-2
... Abstract Porcelain enamels are glass coatings applied primarily to products or parts made of sheet steel, cast iron, and aluminum to improve appearance and to protect the metal surface. This article describes the types of porcelain enamels, and details enamel frits for these materials. It...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
... aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well as the intergranular corrosion of galvanized steel. aluminum alloy aqueous corrosion atmospheric corrosion metallic coatings intergranular corrosion Sendzimir process Cook-Norteman process zinc...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001270
EISBN: 978-1-62708-170-2
... considered in this article include metal coatings, such as zinc coatings, and alloy coatings, such as zinc-iron, types 1 and 2 aluminum, Zn-5AI, Zn-55AI, and lead-tin coatings. aluminum coatings continuous hot dip coatings ferrous metals lead-tin alloycoatings microstructure steel sheet surface...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
... Oxides, scale, rust, etc. Scale, oxides, etc. Effect on base metal None None when properly inhibited, but caustic alkali will attack aluminum and zinc. None when properly inhibited Very slight surface attack when properly controlled Sometimes slight etch Time required 1 to 15 min 1 to 30...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003809
EISBN: 978-1-62708-183-2
... effectiveness of the barrier film. Some aluminum and stainless steel pigments protect in this fashion. With passivation of the steel, the reactivity of the steel surface can be decreased when the paint film contains anticorrosive pigments such as phosphate salts, chromate salts, and lead oxide. Paints can...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
... article “Dip, Barrier, and Chemical Conversion Coatings” in this Section describes the relevant procedures. Diffusion coatings via pack cementation of aluminum, chromium, silicon, or combinations thereof, also are used to protect heat-resistant alloy parts from high-temperature corrosion and to...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003105
EISBN: 978-1-62708-199-3
... can be accomplished by alkaline cleaning, vapor degreasing, or emulsion cleaning. Hot dip coating processes are particularly well suited for applying coatings of aluminum, lead, tin, zinc, and some of their alloys. Hot dipping consists of immersing the steel in a bath of molten metal that...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001306
EISBN: 978-1-62708-170-2
... (electrical steels). This article provides a detailed discussion on the various surface treatments, including cleaning, nitriding, carburizing, coating, and plating, performed on specialty steels. carburizing case hardening cleaning coating corrosion resistance deburring electrical steels ferrous...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
... plastic molds, type P20 is sometimes carburized and hardened after the impression has been machined. Type P21 is an aluminum-containing precipitation-hardening steel that is supplied prehardened to 32 to 36 HRC. This steel is preferred for critical-finish molds because of its excellent polishability...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... nickel, molybdenum, copper, titanium, aluminum, silicon, niobium, nitrogen, sulfur, and selenium. Carbon is normally present in amounts ranging from less than 0.03% to over 1.0% in certain martensitic grades. Although stainless steel is naturally passivated by exposure to air and other oxidizers...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... steels contain larger amounts of nickel and up to 2% Mn. Molybdenum, copper, silicon, aluminum, titanium, and niobium may be added to confer certain characteristics such as halide pitting resistance or oxidation resistance. Sulfur or selenium may be added to certain grades to improve machinability...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003807
EISBN: 978-1-62708-183-2
... addition to these, carbon, molybdenum, and tin are beneficial to atmospheric corrosion resistance; sulfur is detrimental; and vanadium, manganese, and aluminum have no significant effect. While it is appealing to believe that individual alloying elements have a consistent and predictable effect on...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000610
EISBN: 978-1-62708-181-8
... nails. alligatoring austenitic stainless steel crack nucleation crack propagation fatigue fracture fractograph hydrogen embrittlement intergranular corrosion intergranular fracture iron-aluminum alloys orthopedic implants strain rate stress-corrosion cracking Fig. 611 Surface...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003115
EISBN: 978-1-62708-199-3
...) embrittlement, and σ-phase embrittlement. The physical properties of stainless steels are quite different from those of commonly used nonferrous alloys such as aluminum and copper alloys. However, when comparing the various stainless families with carbon steels, many...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
..., forgings, tubing 0.14–0.20 1117 G11170 5024F Bars, forgings, tubing 0.32–0.39 (b) 1137 G11370 5032D Wire (annealed) 0.18–0.23 1020 G10200 5036G Sheet, strip (aluminum coated, low carbon) … … … 5040H Sheet, strip (deep-forming grade) 0.15 max 1010 G10100 5042H Sheet...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... hardened carbon or low-alloy steels , either through hardened or surface hardened by induction or flame Low-carbon or low-alloy steels that are surface hardened by carburizing, cyaniding, or carbonitriding Medium-carbon chromium or chromium-aluminum steels that are hardened by nitriding...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003991
EISBN: 978-1-62708-185-6
... lubricants are used almost exclusively. The most common warm-forming temperature range for carbon and alloy steels is 540 to 870 °C (1000 to 1600 °F). Because of the severity of forging conditions at these temperatures, billet coatings are often used in conjunction with die lubricants. The billet coatings...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
...) S30430 … S30330 S30431 (e) S31600 … S31620 S34700 S34723 S34720 (a) Does not contain titanium. (b) Contains high manganese. (c) Contains aluminum. (d) Contains lead. (e) Contains lower copper All types of stainless steels can be annealed. Annealing of...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003812
EISBN: 978-1-62708-183-2
... aluminum, which form strengthening precipitates during aging. In the solution-annealed condition, these grades have properties similar to those of the austenitic grades and are therefore readily formed. Hardening is achieved after fabrication within a relatively short time at 480 to 620 °C (900 to 1150 °F...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
... Abstract There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes...