Skip Nav Destination
Close Modal
Search Results for
aluminum ternary system
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 269 Search Results for
aluminum ternary system
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 2016
Fig. 3 Liquidus surface in aluminum-rich corner of Al-Cu-Mg ternary system. Adapted from data in Ref 6
More
Image
Published: 30 November 2018
Fig. 3 Liquidus surface in aluminum-rich corner of Al-Cu-Mg ternary system. Adapted from data in Ref 6
More
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006233
EISBN: 978-1-62708-163-4
... Abstract This article is a compilation of ternary alloy phase diagrams for which aluminum (Al) is the first-named element in the ternary system. The other elements are C, Co, Cr, Cu, Fe, Ga, Li, Mg, Mn, Mo, Nb, Ni, Sb, Si, Ti, U, V and Zn. The diagrams are presented with element compositions...
Abstract
This article is a compilation of ternary alloy phase diagrams for which aluminum (Al) is the first-named element in the ternary system. The other elements are C, Co, Cr, Cu, Fe, Ga, Li, Mg, Mn, Mo, Nb, Ni, Sb, Si, Ti, U, V and Zn. The diagrams are presented with element compositions in weight percent. The article includes 136 phase diagrams (liquidus projection, solidus projection, isothermal section, vertical section, and solvus projection).
Image
Published: 30 November 2018
Fig. 18 Ternary and quaternary aluminum alloy systems containing lithium with accompanying commercial alloy designations and primary strengthening phases
More
Image
Published: 30 November 2018
Fig. 11 Schematic of ternary and quaternary aluminum-lithium alloy systems showing primary strengthening phases and corresponding commercial alloy designations. Reprinted from Ref 17
More
Image
Published: 01 January 1993
Fig. 1 Schematic of ternary and quaternary aluminum-lithium alloy systems showing primary strengthening phases and corresponding commercial alloy designations
More
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006241
EISBN: 978-1-62708-163-4
... Dreistoffsystem Aluminium-Magnesium-Zink. III. Der Teilbereich Mg-Al 3 Mg 4 -Al 2 Mg 3 Zn 3 -MgZn 2 -Mg , Z. Metallkd. , Vol 28 , 1936 , p 363 – 367 5. Das D.K. , Rideout S.P. , and Beck P.A. , Intermediate Phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Ternary Systems , Trans. AIME...
Abstract
This article is a compilation of ternary alloy phase diagrams for which iron (Fe) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 16 phase diagrams: Fe-Mn-Ni liquidus projection; Fe-Mn-Ni isothermal section at 750 °C; Fe-Mn-Ni isothermal section at 850 °C; Fe-Mn-Ni isothermal section at 650 °C; Fe-Mn-Ni isothermal section at 550 °C; Fe-Mo-Nb isothermal section at 1050 °C; Fe-Mo-Nb isothermal section at 1150 °C; Fe-Mo-Nb isothermal section at 900 °C; Fe-Mo-Ni liquidus projection; Fe-Mo-Ni isothermal section at 1100 °C; Fe-Mo-Ni isothermal section at 1200 °C; Fe-Ni-W liquidus and solidus projections; Fe-Ni-W isothermal section at 1500 °C; Fe-Ni-W isothermal section at 1455 °C; Fe-Ni-W isothermal section at 1465 °C; and Fe-Ni-W isothermal section at 1400 °C.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006243
EISBN: 978-1-62708-163-4
... section molybdenum ternary system ternary alloy phase diagrams THIS ARTICLE includes systems where molybdenum is the first-named element in the ternary system. Additional ternary systems that include molybdenum are provided in the following locations in this Volume: “Al-Mo-Ni (Aluminum...
Abstract
This article is a compilation of ternary alloy phase diagrams for which molybdenum (Mo) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 8 phase diagrams: Mo-Nb-Ti isothermal section at 600 °C; Mo-Nb-Ti isothermal section at 1100 °C; Mo-Ni-Ti isothermal section at 1200 °C; Mo-Ni-Ti isothermal section at 900 °C; Mo-Ni-W isothermal section at 700 °C; Mo-Ni-W isothermal section at 1000 °C; Mo-Ti-W isothermal section at 2227 °C; and Mo-Ti-W isothermal section at 1000 °C.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006240
EISBN: 978-1-62708-163-4
...) Ternary Phase Diagrams.” “Al-Cu-Fe (Aluminum - Copper - Iron)” , “Al-Cu-Mn (Aluminum - Copper - Manganese)” , “Al-Cu-Ni (Aluminum - Copper - Nickel)” , “Al-Cu-Si (Aluminum - Copper - Silicon)” and “Al-Cu-Zn (Aluminum - Copper - Zinc)” in the article “Al (Aluminum) Ternary Phase Diagrams...
Abstract
This article is a compilation of ternary alloy phase diagrams for which copper (Cu) is the first-named element in the ternary system. The other elements are Fe, Mn, Ni, Pb, S, Sb, Si, Sn, Ti and Zn. The diagrams are presented with element compositions in weight percent. The article includes 42 phase diagrams (liquidus projection, solidus projection, isopleths, isothermal section and vertical section).
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006239
EISBN: 978-1-62708-163-4
... in the ternary system. Additional ternary systems that include chromium are provided in the following locations in this Volume: “Al-Cr-Fe (Aluminum - Chromium - Iron)” , “Al-Cr-Mn (Aluminum - Chromium - Manganese)” and “Al-Cr-Ni (Aluminum - Chromium - Nickel)” in the article “Al (Aluminum) Ternary...
Abstract
This article is a compilation of ternary alloy phase diagrams for which chromium (Cr) is the first-named element in the ternary system. The other elements are Fe, Mn, Mo, N, Nb, Ni, Ti, V and W. The diagrams are presented with element compositions in weight percent. The article includes 55 phase diagrams (liquidus projection, solidus projection, isothermal section and vertical section).
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005402
EISBN: 978-1-62708-196-2
... quaternary phases do exist in the systems, such as some of the quaternary aluminum alloys ( Ref 42 , Ref 43 , Ref 44 ), optimization of model parameters for the quaternary phases in question is necessary, but the amount of effort involved is minimal. The other case is when a phase extends its range...
Abstract
A phase diagram is a graphical representation of the phase equilibria of materials in terms of temperature, composition, and pressure. This article provides an overview on the background of phase diagram calculation software. It presents an algorithm to calculate binary stable phase equilibria. The article summarizes a rapid method to obtain a thermodynamic description of a multicomponent system. It also provides information on thermodynamically calculated phase diagrams.
Image
Published: 30 November 2018
Fig. 8 Weld crack sensitivity of two common quaternary aluminum alloy systems (Al-Mg-Zn-Cu and Al-Mg-Si-Cu) and a common ternary system (Al-Cu-Mg). Source: Ref 19 – 21
More
Image
Published: 01 January 1993
Fig. 4 Weld crack sensitivity of two common quaternary aluminum alloy systems (Al-Mg-Zn-Cu and Al-Mg-Si-Cu) and a common ternary system (Al-Cu-Mg). Source: Ref 16 , 17 , 18
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003085
EISBN: 978-1-62708-199-3
... such as iron and cementite; or several metals such as aluminum, magnesium, and manganese. These substances constitute the components comprising the system and should not be confused with the various phases found within the system. A system, however, also can consist of a single component, such as an element...
Abstract
Alloy phase diagrams are useful for the development, fabrication, design and control of heat treatment procedures that will produce the required mechanical, physical, and chemical properties of new alloys. They are also useful in solving problems that arise in their performance in commercial applications, thus improving product predictability. This article describes different equilibrium phase diagrams (unary, binary, and ternary) and microstructures, description terms, and general principles of reading alloy phase diagrams. Further, the article discusses plotting schemes; areas in a phase diagram; and the position and shapes of the points, lines, surfaces, and intersections, which are controlled by thermodynamic principles and properties of all phases that comprise the system. It also illustrates the application of the stated principles with suitable phase diagrams.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
.... age hardening allotropy alloying aluminum-copper system binary system Clausius-Clapeyron equation crystal structure Gibbs phase rule heat treatment iron-carbon phase diagram Lever rule phase diagram polymorphism solid-state transformation solidification ternary diagrams Theorem of Le...
Abstract
The application of phase diagrams is instrumental in solid-state transformations for the processing and heat treatment of alloys. A unary phase diagram plots the phase changes of one element as a function of temperature and pressure. This article discusses the unary system that can exist as a solid, liquid, and/or gas, depending on the specific combination of temperature and pressure. It describes the accomplishment of conversion between weight percentage and atomic percentage in a binary system by the use of formulas. The article analyzes the effects of alloying on melting/solidification and on solid-state transformations. It explains the construction of phase diagrams by the Gibbs phase rule and the Lever rule. The article also reviews the various types of alloy systems that involve solid-state transformations. It concludes with information on the sources of phase diagram.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... is available for the alloy system. Figure 6(a) compares the calculated and experimentally determined aluminum contents in the γ and γ′ phases for a number of nickel-base superalloys, while Fig. 6 ( b – e ) are for those of cobalt, chromium, molybdenum, and titanium. All calculations are carried out using...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005206
EISBN: 978-1-62708-187-0
... of these functions are obtained from fitting experimental thermochemical data (enthalpies, chemical potentials, etc.), experimental phase diagram data, or predictions from first principles calculations that are based on density functional theory ( Ref 9 ). Phase diagrams for ternary and higher-order systems can...
Abstract
This article discusses the application of thermodynamic in the form of phase diagrams for visually representing the state of a material and for understanding the solidification of alloys. It presents the derivation of the relationship between the Gibbs energy functions and phase diagrams, which forms the basis for the calculation of phase diagrams (CALPHAD) method. The article also discusses the calculation of phase diagrams and solidification by using the Scheil-Gulliver equation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
... schematically is Fig. 2 . As H is increased, the material remains diamagnetic until the critical magnetic field H c is reached. At this point, conduction becomes normal, and complete magnetic flux penetration occurs. Several metallic elements including aluminum, lead, tin, and mercury belong to the type I...
Abstract
Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field from the bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel phases), and high-temperature ceramic superconductors. This article provides an overview of basic principles of superconductors and the different classes of superconducting materials and their general characteristics.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
... by conventional aqueous pretreatment procedures. Nonelectrolytic processes can be used to deposit binary or ternary alloy coatings. The chemistries of ternary alloy plating can be very complex and involve several chelation and secondary reactions. The typical ternary system operates by having the primary...
Abstract
Metallic nonelectrolytic alloy coatings produced from aqueous solutions are commercially used in several industries, including electronics, aerospace, medical, oil and gas production, chemical processing, and automotive. Nonelectrolytic coating systems use two types of reactions to deposit metal onto a part: electroless and displacement. This article explains the various types of electroless and dispersion alloy coating systems. It provides information on the processing of parts, process control, deposit analysis, and equipment used for coating nonelectrolytic displacement alloys. The article concludes with a discussion on the safety and environmental concerns associated with nonelectrolytic deposition processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... Abstract The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon...
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
1