Skip Nav Destination
Close Modal
By
ASM International Materials Life-Cycle Analysis Committee, Hans H. Portisch, Steven B. Young, John L. Sullivan, Matthias Harsch ...
Search Results for
aluminum recycling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 335 Search Results for
aluminum recycling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 4 Aluminum recycling trends in the United States. The percentage of shipments recycled is only now approaching the peak experienced during World War II.
More
Image
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006484
EISBN: 978-1-62708-207-5
... Abstract Aluminum possesses many characteristics that make it highly compatible with recycling. Production of aluminum from scrap has a number of advantages. This article discusses the technology for the recovery, sorting, and remelting of aluminum. It describes the collection and acquisition...
Abstract
Aluminum possesses many characteristics that make it highly compatible with recycling. Production of aluminum from scrap has a number of advantages. This article discusses the technology for the recovery, sorting, and remelting of aluminum. It describes the collection and acquisition of aluminum scrap in transportation, packaging, electrical and electronic, and building and construction sectors. The article reviews the technologies used to accomplish comminution for aluminum: shearing, knife shredding, and swing-hammer shredding. It provides a description of the devices used in scrap sorting, such as hand sorting, air classification, magnetic separation, eddy-current separation, heavy-media separation, and sensor-based sorting. The article also describes thermal processing, refining and casting, and dross processing of aluminum. It provides information on reverberatory and electric furnaces used for melting aluminum.
Image
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 6 Increase in recycling of aluminum UBCs from 1978 to 1988. The calculation for the number of cans collected is based on a can weight survey conducted by the Aluminum Association.
More
Image
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 11 Recycling loop for aluminum automotive components. Castings make up the bulk of aluminum automotive scrap.
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003223
EISBN: 978-1-62708-199-3
... of scrap streams for aluminum cans and lead batteries are discussed in the article “Recycling” in this Section. This concept has been carried further by manufacturers that offer credits to consumers who voluntarily return expended products. Hewlett Packard, for example, packs a prepaid mailing label...
Abstract
Product design greatly influences the recycling and reuse of manufacturing materials. This article presents a design for recycling strategy based on ease of disassembly, minimizing process scrap, using readily recyclable materials, and labelling or otherwise identifying parts. It also discusses the concept of life-cycle analysis (LCA), a quantitative accounting of the environmental and economic costs of using a given material and the energy required to make, distribute, operate, and eventually dispose of the host product and its constituent materials. An important but often overlooked step in the LCA process is to identify potential improvement pathways.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003472
EISBN: 978-1-62708-195-5
... Abstract This article focuses on the techniques used in recycling of aluminum metal matrix composites (MMCs) such as discontinuous SiC reinforced aluminum MMCs and continuous reinforced aluminum MMCs. It provides a discussion on the properties of recycled aluminum MMCs and disposal of aluminum...
Abstract
This article focuses on the techniques used in recycling of aluminum metal matrix composites (MMCs) such as discontinuous SiC reinforced aluminum MMCs and continuous reinforced aluminum MMCs. It provides a discussion on the properties of recycled aluminum MMCs and disposal of aluminum MMCs.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... Abstract Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses...
Abstract
Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling.
Image
in A History of Wrought Aluminum Alloys and Applications
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 12 Processing recycled aluminum beverage cans at Novelis mill in Oswego, NY. Aluminum beverage cans represent the largest closed-loop recycling system for packaging materials, with more than 150 billion cans recycled worldwide each year. (a) Bales of crushed aluminum cans entering
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003222
EISBN: 978-1-62708-199-3
... Abstract This article focuses on the recycling of metals including iron and steel, stainless steel, superalloys, nickel, aluminum, copper, precious metals, lead, magnesium, tin, titanium, and zinc. It provides information on the identification and sorting of scrap metals and discusses...
Abstract
This article focuses on the recycling of metals including iron and steel, stainless steel, superalloys, nickel, aluminum, copper, precious metals, lead, magnesium, tin, titanium, and zinc. It provides information on the identification and sorting of scrap metals and discusses the equipment and procedures used for small-scale and large-scale scrapping operations.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003013
EISBN: 978-1-62708-200-6
..., labels, and other material. Less dense material, such as HDPE flake from base cups and ethylene vinyl acetate from cap liners, is removed via a hydrocyclone or a water sink-float system. The heavier PET and aluminum chips are rinsed once more, dried in spin dryers and hot-air dryers, and processed...
Abstract
This article discusses postconsumer plastics recyclate quantities, the classification of plastics recycling into primary, secondary, tertiary, and quaternary categories, and how the life cycle of plastics is affected by recycling. The recycling processes of polyethylene terephthalate (PET), which accounts for the largest percentage of plastic recycling, high-density polyethylene (HDPE) plastics, the other large-volume plastic recyclate, as well as vinyl resins and polycarbonate resins are described. The life cycle of plastics has four phases: poly formation, part fabrication, product service, and disposal. Landfilling is still the primary method of final disposal, and incineration is another option, but recycling has become a viable alternative. The article presents a comparison between secondary and tertiary recycling.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005286
EISBN: 978-1-62708-187-0
... Abstract Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required by downstream manufacturing processes. This article starts with a review of the different forms of ingot and the molten-metal processing techniques involved in ingot casting. It then describes the open-mold casting and direct chill (DC) ingot casting processes. The process variations and solidification in the DC process are summarized. The article explains continuous processes, namely, twin-roll strip casting, slab casting, and wheel-belt processes. It concludes with information on postsolidification processes, including stress relief and scalping, and a discussion of safety practices for ingot casting.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006485
EISBN: 978-1-62708-207-5
... Abstract Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot, and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes in terms of stress relief, homogenization, and scalping. The article concludes with a discussion on safety limited to ingot casting.
Book Chapter
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002433
EISBN: 978-1-62708-194-8
... that required for part production. As a result, the most significant improvements can be made in the usage phase. Nevertheless, SMC still has the lowest energy demand after the first usage phase, and aluminum is still the worst. Recycling After the first life cycle of the fender, it is recycled...
Abstract
Life-cycle engineering is a part-, system-, or process-related tool for the investigation of environmental parameters based on technical and economic measures. This article focuses on life-cycle engineering as a method for evaluating impacts. It describes the four steps of life-cycle analysis, namely, goal definition and scoping, inventory analysis, impact assessment and interpretation, and improvement analysis. The article discusses the applications of life-cycle analysis results and presents a case history of life-cycle analysis of an automobile fender.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
.... This article reviews those processes after first discussing the driving forces for composites recycling. Driving Forces for Recycling of Composites Why recycle composites? The answers are much the same as for other commodity materials, such as aluminum and glass, for which recycling processes are older...
Abstract
This article begins with a discussion on the driving forces for recycling composites. It reviews the recycling process of thermoset-matrix composites and thermoplastic-matrix composites. The recycling of thermoset-matrix composites includes regrind, chemical, energy recovery, and thermal processes. Thermoplastic-matrix composites are recycled by regrinding, compounding/blending and reprocessing. The article concludes with discussion on the properties of recycled composite fibers.
Image
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 2 Flow diagram for aluminum in the United States, showing the role of recycling in the industry. Scrap recycling (lower left) includes scrap collectors, processors, dealers and brokers, sweat furnace operators, and dross reclaimers. Source: U.S. Bureau Mines
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001053
EISBN: 978-1-62708-161-0
...-melted and vacuum-melted alloys. Air melting offers cost advantages for certain alloys. Recycled scrap is acceptable for most air-melted superalloys. Vacuum melting was developed to prevent the oxidation of alloying elements such as aluminum and titanium. It also allows additional purification...
Abstract
A significant amount of the worldwide demand for metals is met with recycled materials acquired by metal producers in the form of purchased scrap. This article focuses primarily on the methods and technology used to process and repurpose the vast amounts of purchased scrap that recirculate in the industrial supply chain. It describes the U.S. market for iron and steel scrap, providing information on scrap use by industry, factors influencing demand, and the purchased scrap supply. Iron and steel recycling is discussed separately from stainless steel and superalloy recycling in this article, as the scrap industry treats them differently. The scrap processing of iron involves collection, separation and sorting, size reduction and compaction, detinning, blending, and incineration. The recycling of stainless steels and superalloys follows the same process, but requires several additional steps, including secondary nickel refining, degreasing, and separation of metallurgical wastes.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002451
EISBN: 978-1-62708-194-8
.... If this were to rise, or a price more typical of Europe were used, the cost advantage of aluminum in the use phase would be further enhanced, thus increasing its ability to compete at higher production volumes. Recycling Economics of the Body-in-White In the previous analysis, the disposal stage costs...
Abstract
This article provides an overview of cost analysis in materials selection. It discusses the several categories of alternatives for cost analysis. These include rules of thumb, accounting methods, and analytical methods. The article describes the methods for evaluating materials alternatives on the basis of both direct economic costs and indirect social costs. It considers the life cycle costs of alternative body-in-white designs and life cycle analysis. The various elements of cost are introduced with a case study concerned with the manufacture, use, and disposal of the automobile body-in-white.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002438
EISBN: 978-1-62708-194-8
... are allowed to drain out. Again, this part of the yard has an underground containment system to keep oils and other fluids from draining into the soil and eventually into the watertable. After draining, engine blocks are crushed in a hammer-mill. The material is washed, and aluminum parts are removed by hand...
Abstract
This article discusses Allenby's two streams for environmental aspects of design: generic and specific concerns. Generic concerns include guidelines that provide the structure in which specific techniques can be developed and used. Specific methods are environmentally responsible for design and specific information that engineers can use. These methods include life cycle assessment, environmental impact assessment, quality function deployment, design for “X”, failure modes and effects analysis, and design for disassembly.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
... Chips and thin-walled metal wastes are an inexpensive charge material, and the induction crucible furnace, with its inductive bath agitation, is particularly well suited for melting this type of material. The process usually is deployed in aluminum foundries to recycle chips from in-house production...
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
1