1-20 of 1518

Search Results for aluminum nickel-base alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Selçuk Kuyucak
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005336
EISBN: 978-1-62708-187-0
... of aluminum and titanium on the structure and properties of nickel-base alloys. The article provides information on the melting, foundry, and pouring practices for nickel-base alloys. It explains the welding and heat treatment of the nickel-base casting alloys. The article concludes with an overview...
Book Chapter

Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001379
EISBN: 978-1-62708-173-3
..., copper, and copper alloys. Additional applicable materials include nickel, nickel-base alloys, zirconium, titanium, tantalum, and niobium. aluminum aluminum alloys coextrusion welding cold coextrusion welding copper copper alloys extrusion dies hot coextrusion welding low-carbon steel...
Book Chapter

By Vilupanur A. Ravi
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003686
EISBN: 978-1-62708-182-5
... on the outer surface, indicative of the inward diffusion of aluminum. The formation of aluminum-rich Ni 2 Al 3 leads to the precipitation of chromium-rich precipitates in the matrix alloy. Figure 6 ( Ref 12 ) shows the effect of annealing on aluminized nickel ( Fig. 6a ) and nickel- base superalloys...
Book Chapter

Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... ) are those based on aluminum (aluminizing), chromium (chromizing), and silicon (siliconizing). Substrate materials include nickel- and cobalt-base superalloys, steels (including carbon, alloy, and stainless steels), and refractory metals and alloys. Multicomponent pack cementation coatings have been...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001453
EISBN: 978-1-62708-173-3
... the elements at the surface Nickel Flashing Certain heat-resistant alloys that are used as base metals in brazed assemblies—particularly nickel-base alloys containing high percentages of aluminum and titanium (such as Inconel 718)—may require a surface pretreatment to ensure maintenance...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
... easily be categorized by elemental base. aluminum copper corrosion resistance nickel nonferrous metals titanium NONFERROUS METALS AND ALLOYS are widely used to resist corrosion. At one end of the spectrum, they are used for water piping and food preparation. At the other end...
Book Chapter

By Manish Dighe
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003831
EISBN: 978-1-62708-183-2
... aluminum and titanium, in reality, the risk of galvanic corrosion is greatly reduced due to the formation of passive oxide layers on titanium and aluminum. Manganese-Base Filler Metals Manganese-base filler metals are generally alloyed with nickel when used with stainless steels and nickel-base...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
..., high-strength steels, and stainless steel, and provides information on the applications of weldable alloys such as aluminum alloys and copper alloys. The article concludes with a discussion on welding of dissimilar metal (nonferrous-to-nonferrous) combinations and its applications. aluminum...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
... or the physical removal of the oxide layer. Brazing Filler Metals Brazing filler metal alloy compositions can be grouped into four categories. The first and largest group is eutectic-type alloys that have aluminum, nickel, cobalt, or copper as a base, to which silicon/boron (in the case of aluminum...
Book Chapter

Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
.... It also reviews the considerations for selected nonferrous alloy systems such as aluminum, titanium, tantalum, and nickel. corrosion resistance alloy composition shielding molten hot metal surface welding parameter weldments nonferrous alloy system aluminum titanium tantalum nickel...
Book Chapter

By W.L. Mankins, S. Lamb
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... as his significant discovery that aluminum and titanium led to precipitation hardening of nickel-base alloys ( Ref 7 ). This mechanism continues to provide the basis for material strengthening in today's superalloys The work of William A. Mudge on a precipitation hardening nickel-copper alloy (K-Monel...
Book Chapter

Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001293
EISBN: 978-1-62708-170-2
... in the hot sections of all gas turbine engines are coated to enhance resistance to hot corrosion. The most widely used coatings are those based on the intermetallic compounds NiAl and CoAl, which are formed by the diffusion interaction of aluminum with surfaces of the nickel and cobalt alloys, respectively...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001428
EISBN: 978-1-62708-173-3
...-iron families of alloys. Although the nickel and nickel-copper alloys are not immune to this phenomenon, there have been more occurrences in the chromium-bearing nickel-base alloy materials. A study of the weldability of alloy 800 ( Ref 4 ) found that reducing the aluminum plus titanium content...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003160
EISBN: 978-1-62708-199-3
... typical of those in copper-aluminum, copper-tin, and copper-zinc alloys. Commercial SMA Alloys Properties of NiTi and Cu-base SMA alloys are quite different. The NiTi alloys have greater shape memory strain (up to 8% versus 4 to 5% for the copper-base alloys), tend to be much more thermally...
Book Chapter

By Matthew J. Donachie, Stephen J. Donachie
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... additions of titanium and aluminum, which yields some γ′ phase). Nickel-Base The most important class of nickel-base superalloys is that strengthened by intermetallic-compound precipitation in an fcc matrix. For nickel-titanium/aluminum alloys the strengthening precipitate is γ′. Such alloys...
Book Chapter

Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel...
Book Chapter

By M. Ned Rogers
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
... Covered electrode (a) Common name Base-metal applications ECu Copper Coppers ECuSi Silicon bronze Silicon bronzes, brasses ECuSn-A, ECuSn-C Phosphor bronze Phosphor bronzes, brasses ECuNi Copper-nickel Copper-nickel alloys ECuAl-A2 Aluminum bronze Aluminum bronzes, brasses...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys...
Book Chapter

Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals...
Book Chapter

By Jude Mary Runge, Christoph Werner, S. Lampman
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
... deposits on aluminum alloys provide excellent resistance to abrasion. The coatings provide good resistance to certain corrosive environments if copper or nickel is used as a base for the hard chromium coating. Optimal performance in salt spray environments is obtained by having at least 25.4 μm of nickel...