1-20 of 643 Search Results for

aluminum filler metals

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
... Abstract This article provides a comprehensive matrix for selecting an aluminum filler alloy for the gas tungsten arc and gas metal arc welding processes, based on the various requirements or service conditions. A table lists the nominal strengths of aluminum filler metals. aluminum...
Image
Published: 01 January 2003
Fig. 3 Welded assemblies of aluminum alloy 7005 with alloy 5356 filler metal after a 1 year exposure to seawater. (a) As-welded assembly shows severe localized corrosion in the HAZ. (b) Specimen showing the beneficial effects of postweld aging. Corrosion potentials of different areas More
Image
Published: 30 November 2018
Fig. 14 Three types of aluminum brazing sheet, (a) filler-metal coating, (b) diffusion-barrier interlayer, (c) protective alcladding More
Image
Published: 01 January 1993
Fig. 29 Local erosion of CP titanium tube (right side) after torch brazing to titanium plate by aluminum filler metal at 620 °C (1150 °F). Original magnification: 8× More
Image
Published: 01 January 1993
) … … Joint type Fillet/butt Butt Saddle Fillet Fillet/butt (a) 4043 aluminum filler metal; ac/dc square wave power supply; 2% ceriated electrode material; 50% He-50% Ar shielding gas; ac process (b) No filler metal used; dc precision power supply; 2% thoriated electrode material; argon More
Book Chapter

By Roy E. Beal
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001396
EISBN: 978-1-62708-173-3
... to the lower melting point elements. The most common dip soldering operations use zinc-aluminum and tin-lead solders. The molten bath can be heated by electricity or gas. The bath container is made from ceramic materials or a metal that is nonreactive to the filler metal used for dipping. The dip baths...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
... easily avoided by proper filler and base alloy selection and adequate filler metal dilution. Anticipation of these characteristics and general knowledge of these materials allow the heat-treatable aluminum alloys to be readily welded. Description of Heat-Treatable Aluminum Alloys Designation Systems...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006529
EISBN: 978-1-62708-207-5
... Abstract Brazing technology is continually advancing for a variety of metals including aluminum and its alloys and nonmetals. This article discusses the key physical phenomena in aluminum brazing and the materials for aluminum brazing, including base metals, filler metals, brazing sheet...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
.... The wettability of beryllium with any brazing filler metal is difficult, and the preplacement of aluminum fillers is recommended. With close-tolerance joints, capillary flow is possible with the silver alloys, but not always predictable. Although fluxless brazing is possible, the use of proprietary fluxes...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006692
EISBN: 978-1-62708-210-5
... Abstract Wrought 4xxx alloys (extrusions and forgings) exhibit high surface hardness, wear resistance, and a low coefficient of thermal expansion. This article provides a summary of brazing filler metals used to join brazeable aluminum-base metals. It contains tables that list the nominal...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0009239
EISBN: 978-1-62708-173-3
...(Ti20Zr20Cu20Ni)+20Nb 845 1555 1100 2012 1100–1170 2012–2140 Source: Ref 5 , 6 , 7 , 10 Compositions of low-melting aluminum-base brazing filler metals, temperature characteristics, and strength of brazed joints Table 8 Compositions of low-melting aluminum-base brazing filler metals...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... loading with fuel ( Fig. 1 ). Fig. 1 Aluminum oxide compartmented assembly vacuum brazed with 49Ti-49Cu-2Be (in wt%) brazing filler metal at 980 °C (1795 °F) for 10 min A BeO tubular assembly was also brazed, simulating a fuel bundle with ferrule spacers. The larger BeO tube diameters...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... welding/bonding) and exothermic brazing (similar to thermite welding). These processes are used primarily in aerospace applications. Diffusion brazing is used to join titanium, nickel, cobalt, and aluminum alloys. Exothermic compounds that generate enough heat to melt conventional filler metals have been...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... (18) 7.1 (15) 7.1 (15) Filler metal  Diameter, mm (in.) 0.8 (0.03) 0.8 (0.03) 0.8 (0.03) … …  Feed rate, mm/min (in./min) 3810 (150) 3560 (140) 3810 (140) … … Joint type Fillet/butt Butt Saddle Fillet Fillet/butt (a) 4043 aluminum filler metal; ac/dc square...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
... or the physical removal of the oxide layer. Brazing Filler Metals Brazing filler metal alloy compositions can be grouped into four categories. The first and largest group is eutectic-type alloys that have aluminum, nickel, cobalt, or copper as a base, to which silicon/boron (in the case of aluminum...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001392
EISBN: 978-1-62708-173-3
... on clad brazing material, which is defined as any base material or alloy that is clad with an appropriate lower-melting-point brazing filler metal. The most common example is the aluminum-braze clad sheet that is used in the fabrication of aluminum heat exchangers ( Ref 2 ). In these sheets, the aluminum...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001391
EISBN: 978-1-62708-173-3
... of the process, and illustrates a typical arrangement for the exothermic brazing of tube. It provides information on the exothermic compounds used for brazing refractory metals and aluminum alloys. aluminum alloys exothermic brazing exothermic compounds molten filler metal refractory metals solid...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001454
EISBN: 978-1-62708-173-3
... or silicon-bronze alloys that contain aluminum require special attention, because of the tenacity of the surface oxides. Generally, a special American Welding Society (AWS) type 4 flux is used in conjunction with low-melting-point, high-silver-percentage filler metals. Copper-nickel alloys are widely...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001455
EISBN: 978-1-62708-173-3
... series of aluminum alloys have melting points that are too low, they are not normally brazeable. Exceptions are the 7072 alloy, which is used for cladding material only, and 7005 alloy. Alloys with a solidus temperature above 595 °C (1100 °F) are readily brazed using the aluminum-silicon filler metals...