Skip Nav Destination
Close Modal
Search Results for
aluminum filler metals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 643 Search Results for
aluminum filler metals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
... Abstract This article provides a comprehensive matrix for selecting an aluminum filler alloy for the gas tungsten arc and gas metal arc welding processes, based on the various requirements or service conditions. A table lists the nominal strengths of aluminum filler metals. aluminum...
Image
Published: 01 January 2003
Fig. 3 Welded assemblies of aluminum alloy 7005 with alloy 5356 filler metal after a 1 year exposure to seawater. (a) As-welded assembly shows severe localized corrosion in the HAZ. (b) Specimen showing the beneficial effects of postweld aging. Corrosion potentials of different areas
More
Image
Published: 30 November 2018
Fig. 14 Three types of aluminum brazing sheet, (a) filler-metal coating, (b) diffusion-barrier interlayer, (c) protective alcladding
More
Image
Published: 01 January 1993
Fig. 29 Local erosion of CP titanium tube (right side) after torch brazing to titanium plate by aluminum filler metal at 620 °C (1150 °F). Original magnification: 8×
More
Image
Published: 01 January 1993
) … … Joint type Fillet/butt Butt Saddle Fillet Fillet/butt (a) 4043 aluminum filler metal; ac/dc square wave power supply; 2% ceriated electrode material; 50% He-50% Ar shielding gas; ac process (b) No filler metal used; dc precision power supply; 2% thoriated electrode material; argon
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001396
EISBN: 978-1-62708-173-3
... to the lower melting point elements. The most common dip soldering operations use zinc-aluminum and tin-lead solders. The molten bath can be heated by electricity or gas. The bath container is made from ceramic materials or a metal that is nonreactive to the filler metal used for dipping. The dip baths...
Abstract
Dip soldering is accomplished by submerging parts to be joined into a molten solder bath. This article provides an overview of dip soldering, its applications, and the equipment used. The article also provides information on the safety measures to be taken by production personnel when operating solder pots.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties...
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
... easily avoided by proper filler and base alloy selection and adequate filler metal dilution. Anticipation of these characteristics and general knowledge of these materials allow the heat-treatable aluminum alloys to be readily welded. Description of Heat-Treatable Aluminum Alloys Designation Systems...
Abstract
Aluminum alloys, particularly the heat-treatable alloys, are sensitive to weld cracking. Anticipation of these characteristics and general knowledge of these materials assist in selection of suitable method for welding heat-treatable aluminum alloys. This article provides a general description of the metallurgy, characteristics, and applications of heat-treatable aluminum alloys and a detailed discussion on the characteristics of heat-treatable aluminum alloys, their resulting impact on the weld quality and property, along with the methods of avoiding or reducing the impacts. The impact created in the weld quality includes crack sensitivity, liquation cracking, porosity, and heat-affected zone degradation. The article provides an overview of filler alloy selection for reducing weld crack sensitivity and increasing weld strength, ductility, and corrosion resistance in the welds of heat-treatable aluminum alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006529
EISBN: 978-1-62708-207-5
... Abstract Brazing technology is continually advancing for a variety of metals including aluminum and its alloys and nonmetals. This article discusses the key physical phenomena in aluminum brazing and the materials for aluminum brazing, including base metals, filler metals, brazing sheet...
Abstract
Brazing technology is continually advancing for a variety of metals including aluminum and its alloys and nonmetals. This article discusses the key physical phenomena in aluminum brazing and the materials for aluminum brazing, including base metals, filler metals, brazing sheet, and brazing flux. It describes various aluminum brazing methods, such as furnace, vacuum, dip, and torch brazing. Friction, flow, induction, resistance, and diffusion brazing are some alternate brazing methods discussed. The article reviews the brazing of aluminum to ferrous alloys, aluminum to copper, and aluminum to other nonferrous metals. It also discusses post-braze processes in terms of post-braze heat treatment and finishing. The article concludes with information on the safety precautions considered in brazing aluminum alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
.... The wettability of beryllium with any brazing filler metal is difficult, and the preplacement of aluminum fillers is recommended. With close-tolerance joints, capillary flow is possible with the silver alloys, but not always predictable. Although fluxless brazing is possible, the use of proprietary fluxes...
Abstract
This article provides a discussion on filler metal selection, brazing procedures, and brazing equipment for brazing refractory metals. These include molybdenum, tungsten, niobium, and tantalum, and reactive metals. Commercially pure and alpha titanium alloys, alpha-beta alloys, zirconium alloys, and beryllium alloys are some reactive metals discussed in the article.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006692
EISBN: 978-1-62708-210-5
... Abstract Wrought 4xxx alloys (extrusions and forgings) exhibit high surface hardness, wear resistance, and a low coefficient of thermal expansion. This article provides a summary of brazing filler metals used to join brazeable aluminum-base metals. It contains tables that list the nominal...
Abstract
Wrought 4xxx alloys (extrusions and forgings) exhibit high surface hardness, wear resistance, and a low coefficient of thermal expansion. This article provides a summary of brazing filler metals used to join brazeable aluminum-base metals. It contains tables that list the nominal composition and filler-metal alloys of 4xxx series used in structural forms.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0009239
EISBN: 978-1-62708-173-3
...(Ti20Zr20Cu20Ni)+20Nb 845 1555 1100 2012 1100–1170 2012–2140 Source: Ref 5 , 6 , 7 , 10 Compositions of low-melting aluminum-base brazing filler metals, temperature characteristics, and strength of brazed joints Table 8 Compositions of low-melting aluminum-base brazing filler metals...
Abstract
This article discusses the effects of brazing temperature and thermal treatment on structure and mechanical behavior of different classes of titanium base metals such as commercially pure (CP) titanium, alpha or near-alpha alloys, alpha-beta alloys, and beta alloys. The classification, properties, and potential heat treatment of titanium base alloys are presented in tables. The article provides information on brazed joints of titanium with carbon steels, as well as ceramics and graphite. It discusses the risks involved in titanium brazing, including erosion of base metal, brittle intermetallics, and low ductility. The article reviews induction and torch brazing, infrared brazing, diffusion brazing, and brazing by heating with ion bombardment. It concludes by describing the design criteria and limitations of brazing.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... loading with fuel ( Fig. 1 ). Fig. 1 Aluminum oxide compartmented assembly vacuum brazed with 49Ti-49Cu-2Be (in wt%) brazing filler metal at 980 °C (1795 °F) for 10 min A BeO tubular assembly was also brazed, simulating a fuel bundle with ferrule spacers. The larger BeO tube diameters...
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... welding/bonding) and exothermic brazing (similar to thermite welding). These processes are used primarily in aerospace applications. Diffusion brazing is used to join titanium, nickel, cobalt, and aluminum alloys. Exothermic compounds that generate enough heat to melt conventional filler metals have been...
Abstract
This article provides information about the selection of brazing processes and filler metals and describes the brazing (heating) methods, including manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing and specialized brazing processes such as diffusion and exothermic brazing. The article explains joint design, filler materials, fuel gases, equipment, and fluxes in the brazing methods. The article also describes the brazing of steels, stainless steels, cast irons, heat-resistant alloys, aluminum alloys, copper and copper alloys, and titanium and titanium alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... (18) 7.1 (15) 7.1 (15) Filler metal Diameter, mm (in.) 0.8 (0.03) 0.8 (0.03) 0.8 (0.03) … … Feed rate, mm/min (in./min) 3810 (150) 3560 (140) 3810 (140) … … Joint type Fillet/butt Butt Saddle Fillet Fillet/butt (a) 4043 aluminum filler metal; ac/dc square...
Abstract
The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
... or the physical removal of the oxide layer. Brazing Filler Metals Brazing filler metal alloy compositions can be grouped into four categories. The first and largest group is eutectic-type alloys that have aluminum, nickel, cobalt, or copper as a base, to which silicon/boron (in the case of aluminum...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001392
EISBN: 978-1-62708-173-3
... on clad brazing material, which is defined as any base material or alloy that is clad with an appropriate lower-melting-point brazing filler metal. The most common example is the aluminum-braze clad sheet that is used in the fabrication of aluminum heat exchangers ( Ref 2 ). In these sheets, the aluminum...
Abstract
This article focuses on clad brazing material, which is defined as any base material or alloy that is clad with an appropriate lower-melting-point brazing filler metal. It provides information on typical clad brazing strip products in a tabular form and lists the advantages of using clad brazing materials. The article compares the steps in using brazing preforms to fabricate a brazed assembly with the steps involved in using clad brazing materials. It concludes with a discussion on design and manufacturing considerations, during brazing with clad brazing materials.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001391
EISBN: 978-1-62708-173-3
... of the process, and illustrates a typical arrangement for the exothermic brazing of tube. It provides information on the exothermic compounds used for brazing refractory metals and aluminum alloys. aluminum alloys exothermic brazing exothermic compounds molten filler metal refractory metals solid...
Abstract
Exothermic brazing is a process that utilizes the heat produced in a solid-state chemical reaction to melt a conventional filler metal or to produce molten filler metal as a product of the reaction. This article provides the pros and cons of exothermic brazing, describes procedure of the process, and illustrates a typical arrangement for the exothermic brazing of tube. It provides information on the exothermic compounds used for brazing refractory metals and aluminum alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001454
EISBN: 978-1-62708-173-3
... or silicon-bronze alloys that contain aluminum require special attention, because of the tenacity of the surface oxides. Generally, a special American Welding Society (AWS) type 4 flux is used in conjunction with low-melting-point, high-silver-percentage filler metals. Copper-nickel alloys are widely...
Abstract
Copper, copper alloys, and precious metals are probably the most easily brazed metals because of their resistance to oxidation at high temperatures. This article provides a brief discussion on the metallurgy of copper, copper alloys, and precious metals and discusses the filler metals, brazing fluxes, joint clearance and design, and different brazing processes used in brazing of copper, copper alloys, and precious metals.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001455
EISBN: 978-1-62708-173-3
... series of aluminum alloys have melting points that are too low, they are not normally brazeable. Exceptions are the 7072 alloy, which is used for cladding material only, and 7005 alloy. Alloys with a solidus temperature above 595 °C (1100 °F) are readily brazed using the aluminum-silicon filler metals...
Abstract
Aluminum, a commonly used base material for brazing, can be easily fabricated by most manufacturing methods, such as machining, forming, and stamping. This article outlines non-heat-treatable wrought alloys typically used as base metals for the brazing process. It highlights chloride-active and fluoride-active types of fluxes that are used for torch, furnace, or dip brazing processes. The article explains the steps to be performed, including the designing of joints, preblaze cleaning, assembling, brazing techniques (dip brazing, furnace and torch brazing, fluxless vacuum brazing), flux removal techniques, and postbraze heat treatment processes. It concludes with information on the safety precautions to be followed during the brazing process.
1