Skip Nav Destination
Close Modal
Search Results for
aluminum casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1868 Search Results for
aluminum casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... Abstract Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005302
EISBN: 978-1-62708-187-0
... Abstract Grain refinement in aluminum casting alloys tends to reduce the amount of porosity and the size of the pores and to improve mechanical properties, especially fatigue strength. This article provides information on measurement of grain size in alloys and describes the mechanisms of grain...
Abstract
Grain refinement in aluminum casting alloys tends to reduce the amount of porosity and the size of the pores and to improve mechanical properties, especially fatigue strength. This article provides information on measurement of grain size in alloys and describes the mechanisms of grain refinement in aluminum casting alloys. It reviews the use of boron and titanium as a grain refiner for aluminum casting alloys. The article discusses the best practices for grain refinement in various aluminum casting alloys. These include aluminum-silicon casting alloys, aluminum-silicon-copper casting alloys, aluminum-silicon-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article also examines the benefits of grain refinement in aluminum casting alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006533
EISBN: 978-1-62708-207-5
... the composition of sand and binder normally used, and provides information on the aluminum casting alloys produced. The article discusses precision sand casting and sand reclamation, and includes information on health and safety considerations. aluminum casting alloys casting design sand casting sand...
Abstract
Sand casting processes are typically classified according to the type of binder present in the molding sand mixture. This article discusses common sand casting processes and design considerations related to shape, gating, feeding, and pattern making methods. It describes the composition of sand and binder normally used, and provides information on the aluminum casting alloys produced. The article discusses precision sand casting and sand reclamation, and includes information on health and safety considerations.
Image
Published: 01 December 2008
Image
Published: 30 November 2018
Fig. 5 Hydrogen solubility in aluminum casting alloys. Source: Ref 6 . Courtesy American Foundry Society
More
Image
Published: 15 June 2019
Fig. 24 Notch-yield ratio vs. tensile yield strength for aluminum casting alloys at −196 and −253 °C (−320 and −423 °F)
More
Image
Published: 15 June 2019
Fig. 25 Relative rankings of notch toughness of aluminum casting alloys based on notch-yield ratio. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
Image
Published: 15 June 2019
Fig. 15 Relative rankings of notch toughness of aluminum casting alloys based on notch-yield ratio. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings. NTS, notch tensile strength; TYS, tensile yield strength
More
Image
Published: 15 June 2019
Fig. 17 Rankings of notch toughness of welds in aluminum casting alloys based on notch-yield ratio for combinations of casting alloys and filler alloys (middle number). UTS, ultimate tensile strength; TYS, tensile yield strength
More
Image
Published: 15 June 2019
Fig. 20 Notch-yield ratio vs. tensile yield strength for aluminum casting alloys at −196 and −253 °C (−320 and −423 °F)
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006513
EISBN: 978-1-62708-207-5
... Abstract Aluminum casting in steel and iron permanent molds is used widely throughout industry, and the vast majority of permanent mold castings are made of aluminum and its alloys. There are several methods used to cast aluminum in permanent molds. This article focuses on permanent mold...
Abstract
Aluminum casting in steel and iron permanent molds is used widely throughout industry, and the vast majority of permanent mold castings are made of aluminum and its alloys. There are several methods used to cast aluminum in permanent molds. This article focuses on permanent mold casting with molten aluminum fed by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. It discusses the major variables that affect the life of permanent molds, including pouring temperature, casting shape, cooling methods, heating cycles, storage, and cleaning. The article reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006519
EISBN: 978-1-62708-207-5
... and dimensioning, the design and manufacture of shell molds, melting and casting methods, and postcasting operations such as knockout, core removal, and cleaning. It also addresses a wide range of design considerations, discusses casting defects, and provides several design examples. aluminum alloys casting...
Abstract
Investment casting, in which molten metal is poured into hot molds, allows for the production of aluminum parts with extremely thin sections, knife edges and sharp detail. This article describes the various steps in the investment casting process, including patternmaking and dimensioning, the design and manufacture of shell molds, melting and casting methods, and postcasting operations such as knockout, core removal, and cleaning. It also addresses a wide range of design considerations, discusses casting defects, and provides several design examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... Abstract This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based...
Abstract
This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based on the stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on foundry alloys for specific casting applications. The article concludes with a discussion on the heat treatment practices and properties of aluminum casting alloys.
Image
Published: 01 June 2024
Fig. 16 Secondary electron SEM fractograph of a 400-series aluminum casting alloy locking tab on a wire cable pulley assembly that fractured during a helicopter electrical cable pulling operation. (a) Lower-magnification micrograph. Original magnification: 490×. (b) Higher-magnification
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... Abstract This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006264
EISBN: 978-1-62708-169-6
... Abstract This article presents a detailed discussion on typical thermal treatment practices for hardening of various aluminum casting alloys. These practices are solution treatment, quenching or cooling, preaging, and artificial aging at an elevated temperature. The aluminum casting alloys...
Abstract
This article presents a detailed discussion on typical thermal treatment practices for hardening of various aluminum casting alloys. These practices are solution treatment, quenching or cooling, preaging, and artificial aging at an elevated temperature. The aluminum casting alloys considered here are: Al-Cu and Al-Cu-Mg (2xx) alloys, Al-Zn-Mg (7xx) alloys, Al-Si-Mg alloys, Al-Si-Cu, and Al-Si-Cu-Mg alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... Abstract This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions...
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006507
EISBN: 978-1-62708-207-5
... Abstract The strength of aluminum castings can be improved significantly by heat treatments, which control the size, shape, and distribution of the impurity elements in the casting. This article presents a discussion on the heat treatment of aluminum alloy castings, with a focus...
Abstract
The strength of aluminum castings can be improved significantly by heat treatments, which control the size, shape, and distribution of the impurity elements in the casting. This article presents a discussion on the heat treatment of aluminum alloy castings, with a focus on the fundamental technical aspects involved in each process step. The intent is to convey a good understanding of the fundamental aspects of heat treatment. Typical heat treatments of aluminum casting alloys are presented in a table. The article describes the solution heat treatment, quenching, and preaging of Al-Si-Mg alloys, as well as the solution heat treatment and artificial aging of Al-Si-Cu-Mg casting alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002407
EISBN: 978-1-62708-193-1
... Abstract This article reviews the fatigue and fracture properties of aluminum alloy castings, specifically alloys A356 and A357/D357 (all-T6) and alloy A201-T7, from the perspective of both design and manufacturing considerations. In addition, it provides an overview of the roles played...
Abstract
This article reviews the fatigue and fracture properties of aluminum alloy castings, specifically alloys A356 and A357/D357 (all-T6) and alloy A201-T7, from the perspective of both design and manufacturing considerations. In addition, it provides an overview of the roles played by microstructure, manufacturing processes, test conditions, and casting design in determining the fatigue and fracture properties of aluminum casting alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
... Abstract Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
1