1-20 of 355 Search Results for

aluminum alloy weldments

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002408
EISBN: 978-1-62708-193-1
... Abstract This article briefly reviews the factors that affect the fatigue strength of aluminum alloy weldments. It discusses a number of factors influencing the fatigue performance of welded aluminum joints. The article describes the effects of fatigue behavior on weldments based on parent...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
.... It also reviews the considerations for selected nonferrous alloy systems such as aluminum, titanium, tantalum, and nickel. corrosion resistance alloy composition shielding molten hot metal surface welding parameter weldments nonferrous alloy system aluminum titanium tantalum nickel...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001420
EISBN: 978-1-62708-173-3
... to the welding of aluminum-lithium alloys that are now available commercially. Tabular data are provided for alloy composition, density, and modulus; tensile properties of plate; and tensile properties of weldments. There is limited information in the open literature regarding many of the newer alloys; therefore...
Image
Published: 01 January 1993
Fig. 4 Weldability data showing the improved resistance to hot cracking obtained when using an aluminum-silicon filler alloy. (a) Trans-Varestraint test data for alloy 2094 weldments. Source: Ref 25 . (b) Inverted-tee test data for alloy 2090 weldments. Source: Ref 27 More
Image
Published: 30 November 2018
Fig. 22 Weldability data showing the improved resistance to hot cracking obtained when using an aluminum-silicon filler alloy. (a) Trans-Varestraint test data for alloy 2094 weldments. Source: Ref 61 . (b) Inverted-tee test data for alloy 2090 weldments. Source: Ref 61 , 62 More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
... are described in the article “Welding of Aluminum Alloys” in this Volume. Transverse and longitudinal shear strengths of fillet welds are also listed in the aforementioned article. Additional information on properties of aluminum weldments can be found in Ref 44 and 45 . Figure 12 displays strength...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005613
EISBN: 978-1-62708-174-0
... in a weldment. It reviews the heat-affected and fusion zones of single-pass and multi-pass weldments. The article also includes a discussion on the welds in alloy systems, such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys. aluminum-base alloys casting fusion zone heat...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001471
EISBN: 978-1-62708-173-3
... difference that makes some regions of the weldment more active. For example, Fig. 3 depicts weld metal deposits that have different corrosion behavior from the base metal in three aluminum alloys ( Ref 6 ). Fig. 3 Effect of welding heat on microstructure, hardness, and corrosion potential of three...
Image
Published: 01 January 2003
Fig. 3 Welded assemblies of aluminum alloy 7005 with alloy 5356 filler metal after a 1 year exposure to seawater. (a) As-welded assembly shows severe localized corrosion in the HAZ. (b) Specimen showing the beneficial effects of postweld aging. Corrosion potentials of different areas More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001475
EISBN: 978-1-62708-173-3
... environments ( Table 2 ). Environments that cause stress-corrosion cracking in selected ferrous and nonferrous alloys Table 2 Environments that cause stress-corrosion cracking in selected ferrous and nonferrous alloys Material Environment Aluminum alloys NaCl-H 2 O 2 solutions NaCl...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001341
EISBN: 978-1-62708-173-3
... by the weld thermal cycles and by the welding environment. The article provides information on welds in other alloy systems such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys. aluminum alloys ferritic steel weldments fusion welding heat treatment nickel alloys solid...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005617
EISBN: 978-1-62708-174-0
... and nonferrous alloys Material Environment Aluminum alloys NaCl-H 2 O 2 solutions NaCl solutions Sea water Air, water vapor Copper alloys Ammonia vapors and solutions Amines Water, water vapor Gold alloys FeCl 3 solutions Acetic acid-salt solutions lnconel Caustic soda...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001384
EISBN: 978-1-62708-173-3
... results are obtained with nonferrous alloys. Production applications include electrical wire harnesses for the appliance and automotive industry; buss bars; fuses; circuit breakers; contacts; ignition modules; starter motors; aluminum and copper foil; battery foils; capacitors; encapsulation...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005607
EISBN: 978-1-62708-174-0
... with the weldments, and there is no evidence of melting. Fig. 12 Typical lap shear coupons before tensile shear testing in 6 xxx aluminum alloy prepainted for automotive study Fig. 13 Lap shear coupon after tensile shear testing, showing nugget tearout indicative of a good weld Fig. 14...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001424
EISBN: 978-1-62708-173-3
... to distinguish between these two classes of alloys when considering postweld heat treatment. In general, alloys that contain significant amounts of age-hardening elements, such as aluminum, titanium, and niobium, are heat treatable. The compositions of selected nickel- and cobalt-base alloys in these two...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001418
EISBN: 978-1-62708-173-3
... stronger than a similar weld made on alloy 5050 (1% Mg). Effect of variations in temper and filler alloy on non-heat-treatable aluminum gas-metal arc weldment properties Table 2 Effect of variations in temper and filler alloy on non-heat-treatable aluminum gas-metal arc weldment properties Base...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003785
EISBN: 978-1-62708-177-1
..., the microstructures observed in aluminum weldments will usually be the solidification structure. Titanium Alloys Titanium alloys are classified as α, α-β, or metastable β alloys based on the structure present at room temperature. Metastable β alloys, which are not significantly altered by solid-state...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
... Abstract Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
.... and Baeslack W.A. III , Electron Microscopy of Inertia-Friction Weldments in a Rapidly Solidified Al-Fe-Mo-V Alloy , J. Mater. Sci. , Vol 25 , 1990 , p 2642 – 2653 31. Ananthanarayanan V. , “Diffusion Welding of an RS/PM Aluminum Alloy,” Ph.D. dissertation, The Ohio State University...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006108
EISBN: 978-1-62708-175-7
... are steel and aluminum, magnesium, or titanium; copper and aluminum; aluminum and magnesium; and similar combinations of titanium. When joining these alloys, caution should be exercised in choosing a welding procedure so as to prevent the formation of any brittle constituents. References References 1...