Skip Nav Destination
Close Modal
Search Results for
aluminum alloy A356.0
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 61 Search Results for
aluminum alloy A356.0
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 22 Aluminum alloy A356.0 near-quenched eutectic growth interface. (a) Secondary electron black-and-white image (b) Electron backscattering diffraction map. (c) Indicates the crystallographic orientation. Source: K. Nogita and A.K. Dahle, Scr. Mater ., Vol 48, 2003, p 307–313
More
Image
Published: 15 June 2019
Fig. 11 Fatigue properties of conventionally cast and squeeze cast aluminum alloy A356.0-T6. Source: Ref 36
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006568
EISBN: 978-1-62708-210-5
... castings as a function of solution time; and room-temperature aging characteristics for aluminum alloy 356.0-T4. Growth and hardness curves for aluminum alloy 356.0-T4 are also presented. aging characteristics aluminum alloy 356.0 aluminum alloy A356.0 aluminum-silicon-magnesium alloys Charpy...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys 356.0 and A356.0. Figures illustrate the variation of Charpy impact energy in A356-T6 castings as a function of solution time; and room-temperature aging characteristics for aluminum alloy 356.0-T4. Growth and hardness curves for aluminum alloy 356.0-T4 are also presented.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003727
EISBN: 978-1-62708-177-1
... in the unmodified alloys and the strontium-modified Al-7Si alloy. A planar eutectic growth front was observed in the Al-7Si alloy alloys; a more complex eutectic grain structure was found in the strontium-modified A356 alloy. Fig. 22 Aluminum alloy A356.0 near-quenched eutectic growth interface...
Abstract
The most common aluminum alloy systems are aluminum-silicon, aluminum-copper, and aluminum-magnesium. This article focuses on the grain structure, eutectic microstructure, and dendritic microstructure of these systems. It provides information on microsegregation and its problems in casting of alloys. The article also illustrates the casting defects such as macroporosity, microshrinkage, and surface defects, associated with the alloys.
Image
Published: 01 December 2004
Fig. 21 Modified as-cast microstructures of aluminum alloys. (a) Al-10Si, strontium-modified eutectic. Source: Ref 13 . (b) Alloy A356.0, strontium-modified eutectic. Source: Ref 14 . (c) Alloy A356.0, sodium-modified eutectic. Original magnification 100×. Source: Ref 14
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... A357.0 7.0 … … 0.58 … 0.12 bal 0.55 Be 557–613 1035–1135 (a) Includes AWS designation for brazing fillers, as applicable. (b) Wrought alloy with composition identical to cast alloy C355.0. (c) Wrought alloy with composition identical to cast alloy A356.0. (d) Wrought alloy...
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61. alloy 201.0 alloy 354.0-T61 alloy A356.0-T61 alloy C355.0-T61 aluminum...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
.... If variations in the composition limits are too small to require a change in numeric designation, alloys are indicated by a preceding letter (A, B, C, etc.). The first version of an alloy, for example, 356.0, contains no letter prefix; the first variation has an A, for example, A356.0, the second a B...
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Image
in Aluminum Foundry Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 13 Comparison of (a) notch yield ratio and (b) unit propagation energy versus yield strength for various aluminum alloy premium-quality castings and wrought aluminum alloy plate. 1, XA201.0-T7; 2, 249.0-T7; 3, 224.0-T7; 4, C355.0-T6; 5, 354.0-T6; 6, A356.0-T6; 7, 356.0-T6; 8, A357.0-T6
More
Image
Published: 01 December 2004
Fig. 24 Scanning electron micrography image of aluminum dendrites in the fractured surface of a tensile test bar of an A356.0 alloy
More
Image
Published: 01 December 2008
Fig. 5 Cross section through the casting at the origin region showing a microstructure typical for a solution treated and artificially aged A356.0 aluminum alloy, but with only limited spheroidization of the eutectic silicon
More
Image
Published: 15 June 2019
Fig. 30 Fatigue crack growth rate ( R = 0.1) vs. stress-intensity factor at room temperature for A356.0-T6 aluminum alloy castings produced by various processes. VRC/PRC, vacuum riserless casting/pressure riserless casting
More
Image
Published: 15 June 2019
Fig. 31 Fatigue crack growth rate ( R = 0.5) vs. stress-intensity factor at room temperature for A356.0-T6 aluminum alloy castings produced by various processes. VRC/PRC, vacuum riserless casting/pressure riserless casting
More
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
...., 0.20% Fe maximum), with the result that appreciably higher strength, ductility, and toughness are reliably provided. Accordingly, one of the most common gravity-cast alloys, 356.0, has variations A356.0, B356.0, and C356.0; each of these alloys has identical major alloy contents but has decreasing...
Abstract
The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1). This article provides a detailed discussion on the alloy and temper designation system for aluminum and its alloys. The Aluminum Association alloy designations are grouped as wrought and cast alloys. Lengthy tables provide information on alloying elements in wrought aluminum and aluminum alloys; nominal composition of aluminum alloy castings; typical mechanical properties of wrought and cast aluminum alloys in various temper conditions; and cross references to former and current cast aluminum alloy designations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... (e.g., 0.20% Fe maximum), with the result that appreciably higher strength, ductility, and toughness are reliably provided. Accordingly, one of the most common gravity-cast alloys, 356.0, has modifications A356.0, B356.0, C356.0, and F356.0; each of these alloys has identical major alloy contents...
Abstract
Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify alloying elements, compositional modifications, purity levels, and product types. It also uses a multicharacter code to convey process-related details on heat treating, hardening, cooling, cold working, and other stabilization treatments. The article includes several large tables that provide extensive information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... propellers, motor parts, and housings Fig. 3 Die cast alloy 380.0 transmission case Aluminum-silicon-magnesium alloys including 356.0 and A356.0 have excellent casting characteristics and resistance to corrosion. Heat treatment provides combinations of tensile and physical properties...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006569
EISBN: 978-1-62708-210-5
... premium casting of A210.0, A206.0, 224.0, 249.0, 354.0, C355.0, A356.0, D357.0, 358.0, and 359.0. Fabrication Characteristics Fabrication characteristics are similar to alloy 356.0. Like alloy 356.0, it is possible to produce a variety of strength levels by adjustment of magnesium and heat...
Abstract
The family of type 357 alloys contain the highest magnesium levels and are used where high strength is required. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006555
EISBN: 978-1-62708-210-5
... alloys are in their optimum temper Table 6 Minimum room-temperature tensile properties of A206.0 and four other high-strength aluminum casting alloys, all alloys are in their optimum temper Property A 206.0 T7 A 201.0 T7 224.0 T62 A357.0 T61 A356.0 T61 Tensile strength MPa (ksi) 380...
Abstract
The 206.0, A206.0, and B206.0 alloys (aluminum alloys 2xxx) are structural castings in the heat-treated temper for automotive and aerospace applications where high tensile and yield strengths with moderate elongations are needed. This datasheet provides information on key alloy metallurgy and fabrication characteristics of these 2xxx series alloys, as well as the effects of processing on their typical physical and mechanical properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
... Abstract This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic...
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... gears, impellers, compressors, and aircraft and missile components requiring high strength Alloys 356.0, A356.0 Machine tool parts, aircraft wheels, pump parts, marine hardware, valve bodies Alloy B443.0 Carburetor bodies, waffle irons Alloy 513.0 Ornamental hardware and architectural...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
1