Skip Nav Destination
Close Modal
Search Results for
aluminum alloy 7255
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Search Results for aluminum alloy 7255
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006744
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits for aluminum alloy 7255, with emphasis on the minimum static properties of aluminum alloy 7255 plate and fracture toughness of aluminum alloy 7255-T7751. Fatigue crack growth resistance of alloy 7255 plate is compared with those...
Abstract
This datasheet provides information on composition limits for aluminum alloy 7255, with emphasis on the minimum static properties of aluminum alloy 7255 plate and fracture toughness of aluminum alloy 7255-T7751. Fatigue crack growth resistance of alloy 7255 plate is compared with those of legacy alloy 7055 plate.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... Abstract The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different...
Abstract
The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different series of wrought aluminum alloys (1xxx to 8xxx) and discusses their applications based on the alloying system introduced by the Aluminum Association.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006543
EISBN: 978-1-62708-210-5
... Abstract This article summarizes the characteristics, material properties, and typical applications of aluminum alloy wrought products. It describes the most widely used worldwide alloy designation system and discusses five major categories, namely flat-rolled products; rod, bar, and wire...
Abstract
This article summarizes the characteristics, material properties, and typical applications of aluminum alloy wrought products. It describes the most widely used worldwide alloy designation system and discusses five major categories, namely flat-rolled products; rod, bar, and wire; tubular products; shapes; and forgings. The article also discusses three widely used indexes to define the fracture resistance of aluminum alloys: notch toughness, tear resistance, and plane-strain fracture toughness. It also describes three types of corrosion attack of these alloys: general or atmospheric surface corrosion, stress-corrosion cracking, and exfoliation attack.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
... that significantly affect the fracture propagation rate and fracture appearance. The external environment includes hydrogen, corrosive media, low-melting metals, state of stress, strain rate, and temperature. The mechanism of stress-corrosion cracking in metals such as steels, aluminum, brass, and titanium alloys...
Abstract
This article begins with a discussion of the basic fracture modes, including dimple ruptures, cleavages, fatigue fractures, and decohesive ruptures, and of the important mechanisms involved in the fracture process. It then describes the principal effects of the external environment that significantly affect the fracture propagation rate and fracture appearance. The external environment includes hydrogen, corrosive media, low-melting metals, state of stress, strain rate, and temperature. The mechanism of stress-corrosion cracking in metals such as steels, aluminum, brass, and titanium alloys, when exposed to a corrosive environment under stress, is also reviewed. The final section of the article describes and shows fractographs that illustrate the influence of metallurgical discontinuities such as laps, seams, cold shuts, porosity, inclusions, segregation, and unfavorable grain flow in forgings and how these discontinuities affect fracture initiation, propagation, and the features of fracture surfaces.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006874
EISBN: 978-1-62708-387-4
... or through script phases in aluminum alloys. Decohesive Rupture Strictly speaking, a fracture is referred to as decohesive rupture when it exhibits little or no bulk plastic deformation and does not occur by dimpled rupture, cleavage, or fatigue. Decohesive rupture is a fracture mechanism where...
Abstract
Identification of the fracture mechanism is one of the principal responsibilities of a failure analyst and is an important component of any root-cause analysis. This article explores the varied mechanisms responsible for metal fracture, particularly regarding fractography. The behavior of engineering materials at fracture is based on a large number of interrelated characteristics from the atomic level to the component level. These characteristics range from ductile to brittle at the microscale and macroscale levels. Fundamental relative ductility results from the type of electronic bonding, the crystal structure, and the broader long-range degree of order. It provides detailed discussion on ductile fracture, brittle fracture, mixed fracture, embrittlement, stress-corrosion cracking.