Skip Nav Destination
Close Modal
Search Results for
aluminum alloy 5557
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17
Search Results for aluminum alloy 5557
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006704
EISBN: 978-1-62708-210-5
.... aluminum alloy 5457 aluminum alloy 5557 aluminum alloy 5657 bright-finishing alloys fabrication characteristics mechanical properties physical properties Alloys 5457, 5557, and 5657 are essentially high-purity binary aluminum-magnesium alloys ( Table 1 ). The limits on iron and silicon vary...
Abstract
This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and mechanical properties, and applications of bright-finishing alloys 5457, 5557, and 5657. A table lists approximate bend radii for 90 deg cold bending of alloy 5557.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006326
EISBN: 978-1-62708-179-5
... of cast iron is only slightly lower than that of high-strength steels and aluminum alloys. Ductile iron has very good fatigue strength and, in this respect, outperforms all other cast alloys except steel. Therefore, it is a preferred material for many dynamically loaded constructions ( Ref 2 , 27...
Abstract
This article discusses some of the factors that are linked directly to the casting design of ductile iron castings. It reviews the choice of molding process, application of draft, and patternmaker's allowance that should be taken into consideration in designing castings. The article describes the solidification shrinkage associated with the volume change that occurs during solidification, as well as strength and stiffness of ductile iron castings. It concludes with a discussion on the thermal deformation and residual stress in ductile iron castings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003123
EISBN: 978-1-62708-199-3
... Abstract More than 450 alloy designations/compositions have been registered by the Aluminum Association (AA) Inc. for aluminum and aluminum alloys. This article contains tables that list the designations and composition limits of wrought unalloyed aluminum and wrought aluminum alloys...
Abstract
More than 450 alloy designations/compositions have been registered by the Aluminum Association (AA) Inc. for aluminum and aluminum alloys. This article contains tables that list the designations and composition limits of wrought unalloyed aluminum and wrought aluminum alloys, and designations and composition limits for aluminum alloys in the form of castings and ingot. It provides helpful information on the Unified Numbering System (UNS) numbers and its corresponding AA numbers for aluminum and aluminum alloys, and the international alloy designations cross-referenced to its equivalent compositions of wrought AA alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003181
EISBN: 978-1-62708-199-3
... Abstract This article provides a detailed account on forming operations (blanking, piercing, press-brake forming, contour rolling, deep drawing, cold forming, and hot forming) of various nonferrous metals, including aluminum alloys, beryllium, copper and its alloys, magnesium alloys, nickel...
Abstract
This article provides a detailed account on forming operations (blanking, piercing, press-brake forming, contour rolling, deep drawing, cold forming, and hot forming) of various nonferrous metals, including aluminum alloys, beryllium, copper and its alloys, magnesium alloys, nickel alloys, titanium alloys, and platinum metals. It discusses the formability, equipment and tooling, and lubricants used in the forming operations of these nonferrous metals.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001281
EISBN: 978-1-62708-170-2
... Abstract Anodizing refers to conversion coating of the surface of aluminum and its alloys to porous aluminum oxide. This article provides the reasons for performing anodizing and discusses the three principal types of anodizing processes, namely, chromic acid process, sulfuric acid process...
Abstract
Anodizing refers to conversion coating of the surface of aluminum and its alloys to porous aluminum oxide. This article provides the reasons for performing anodizing and discusses the three principal types of anodizing processes, namely, chromic acid process, sulfuric acid process, and hard anodic process. It describes the limitations imposed by variables, such as alloy composition, surface finish, prior processing, temper or heat treatment, and the use of inserts, on the anodizing processes. The article explains the causes and means adopted for correcting several specific problems in anodizing aluminum. It also discusses the process control techniques and equipment used for anodizing. The article reviews the sealing processes for anodic coatings and the method for coloring the coatings. It concludes with a discussion on the effects of anodic coatings on the surface and mechanical properties of aluminum and its alloys.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005887
EISBN: 978-1-62708-167-2
... Abstract This article focuses on the temperature requirements of typical nonferrous metals and their alloys of commercial importance. These include aluminum, copper, magnesium, and titanium. The article describes the thermoelectricity, photoelectricity, and capacity of aluminum alloys...
Abstract
This article focuses on the temperature requirements of typical nonferrous metals and their alloys of commercial importance. These include aluminum, copper, magnesium, and titanium. The article describes the thermoelectricity, photoelectricity, and capacity of aluminum alloys. In addition, it provides information on the electrical properties of copper and its alloys. The article also lists typical physical and mechanical properties of aluminum alloys at ambient temperature.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005141
EISBN: 978-1-62708-186-3
... Abstract This article discusses the general formability considerations of aluminum alloys. To conduct a complete analysis of a formed part, the required mechanical properties, as determined by several standard tests, must be considered. The article describes tension testing and other tests...
Abstract
This article discusses the general formability considerations of aluminum alloys. To conduct a complete analysis of a formed part, the required mechanical properties, as determined by several standard tests, must be considered. The article describes tension testing and other tests designed to simulate various production forming processes, including cup tests and bend tests, which help in determining these properties. It provides information on the equipment and tools, which are used in the forming of aluminum alloys. The article presents a list of lubricants that are most widely used in the forming. It also analyzes the various forming processes of aluminum alloys. The processes include blanking and piercing, bending, press-brake forming, contour roll forming, deep drawing, spinning, stretch forming, rubber-pad forming, warm forming, superplastic forming, explosive forming, electrohydraulic forming, electromagnetic forming, hydraulic forming, shot peening, and drop hammer forming.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001058
EISBN: 978-1-62708-162-7
... Abstract A four-digit numerical designation system is used to identify wrought aluminum and aluminum alloys. In addition to providing a detailed account of the temper designation system for aluminum and aluminum alloys, this article describes wrought and cast aluminum and aluminum alloy...
Abstract
A four-digit numerical designation system is used to identify wrought aluminum and aluminum alloys. In addition to providing a detailed account of the temper designation system for aluminum and aluminum alloys, this article describes wrought and cast aluminum and aluminum alloy designations. It also tabulates the grade designations and compositions of wrought and cast aluminum and aluminum alloys. The article provides information on cross-referencing of aluminum wrought and ingot/cast products according to composition, per the Aluminum Association, Unified Numbering System (UNS) and International Organization for Standardization (ISO) standards.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
... of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc...
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Abstract
The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1). This article provides a detailed discussion on the alloy and temper designation system for aluminum and its alloys. The Aluminum Association alloy designations are grouped as wrought and cast alloys. Lengthy tables provide information on alloying elements in wrought aluminum and aluminum alloys; nominal composition of aluminum alloy castings; typical mechanical properties of wrought and cast aluminum alloys in various temper conditions; and cross references to former and current cast aluminum alloy designations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify...
Abstract
Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify alloying elements, compositional modifications, purity levels, and product types. It also uses a multicharacter code to convey process-related details on heat treating, hardening, cooling, cold working, and other stabilization treatments. The article includes several large tables that provide extensive information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... Abstract The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different...
Abstract
The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different series of wrought aluminum alloys (1xxx to 8xxx) and discusses their applications based on the alloying system introduced by the Aluminum Association.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
... Abstract This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article...
Abstract
This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article discusses distortion and dimensional variation and machining problems during the machining of high-silicon aluminum alloy. It also provides information on tool design and material, speed and feed, and the cutting fluid used for various machining processes, namely, turning, boring, planing and shaping, broaching, reaming, tapping, milling, sawing, grinding, honing, and lapping. The article concludes with a discussion on drilling operations in automatic bar and chucking machines and drill presses.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005816
EISBN: 978-1-62708-165-8
... B. , and Wells M. , The Use of Water Cooling during the Continuous Casting of Steel and Aluminum Alloys , Metall. Mater. Trans. A , Vol 36 , 2005 , p 187 – 204 10.1007/s11661-005-0151-y 42. Ciofalo M. , Piazza I.D. , and Brucato V. , Investigation of the Cooling...
Abstract
Spray quenching refers to a wide variety of quenching processes that involve heat removal facilitated by the impingement of a quenchant medium on a hot metal surface. This article provides information on the basic concepts of spray quenching, and discusses the most commonly used techniques in quench tank agitation to establish uniformity of the quenched part. Common techniques include quenchant stirring, quenchant circulation, and submerged jet/spray mixing. The article also describes the effect of quenching agitation and reviews heat-transfer characteristics of immersion quenching and spray quenching with water.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001046
EISBN: 978-1-62708-161-0
... grades may contain molybdenum, silicon, aluminum, titanium, and niobium to confer particular characteristics. Sulfur or selenium may be added, as in the case of the austenitic grades, to improve machinability. The ferritic alloys are ferromagnetic. They can have good ductility and formability, but high...
Abstract
This article discusses the composition, characteristics, and properties of the five groups of wrought stainless steels: martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, duplex stainless steels, and precipitation-hardening stainless steels. The selection of stainless steels may be based on corrosion resistance, fabrication characteristics, availability, mechanical properties in specific temperature ranges and product cost. The fabrication characteristics of stainless steels include formability, forgeability, machinability, and weldability. The product forms of wrought stainless steels are plate, sheet, strip, foil, bar, wire, semifinished products, pipes, tubes, and tubing. The article describes tensile properties, elevated-temperature properties, subzero-temperature properties, physical properties, corrosion properties, and fatigue strength of stainless steels. It characterizes the experience of a few industrial sectors according to the corrosion problems most frequently encountered and suggests appropriate grade selections. Corrosion testing, surface finishing, mill finishes, and interim surface protection of stainless steels are also discussed.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.9781627081658
EISBN: 978-1-62708-165-8