Skip Nav Destination
Close Modal
Search Results for
aluminum alloy 5254
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 39 Search Results for
aluminum alloy 5254
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006701
EISBN: 978-1-62708-210-5
... to the production of drawn shapes and blanked and pierced parts. Although it is occasionally spun, it requires more frequent reannealing than aluminum 3003, because of its more rapid rate of strain hardening. Maximum reduction between anneals is 50% or under, depending on the product. Alloy 5254, introduced...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
...Relative rating of selected aluminum filler alloys used to fillet weld or butt weld two-component base alloys Table 1 Relative rating of selected aluminum filler alloys used to fillet weld or butt weld two-component base alloys Data are for welded assemblies not heat treated after welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001436
EISBN: 978-1-62708-173-3
... peroxide exposure, the manganese and copper impurities have been controlled to low limits in 5652 and 5254 base alloys, as well as 5654 filler alloy. In some cases, a high-purity aluminum alloy is chosen for special exposure. A filler alloy of equal or higher purity to that of the base alloy is generally...
Abstract
Aluminum and its alloys can be joined by as many or more methods than any other metal. This article discusses the properties of aluminum, namely hydrogen solubility, electrical conductivity, and thermal characteristics. It analyses the primary factors commonly considered when selecting a welding filler alloy. These include ease of welding or freedom from cracking, tensile or shear strength of the weld, weld ductility, service temperature, corrosion resistance, and color match between the weld and base alloy after anodizing. The article provides a detailed description of gas-shielded arc welding processes for welding of aluminum alloys and also reviews other welding processes such as oxyfuel gas welding and laser-beam welding.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
...Typical mechanical properties (in customary units) of wrought aluminum alloys in various temper conditions Table 4 Typical mechanical properties (in customary units) of wrought aluminum alloys in various temper conditions Alloy and temper (a) Tension Hardness, Brinell No., 500 kg load...
Abstract
The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1). This article provides a detailed discussion on the alloy and temper designation system for aluminum and its alloys. The Aluminum Association alloy designations are grouped as wrought and cast alloys. Lengthy tables provide information on alloying elements in wrought aluminum and aluminum alloys; nominal composition of aluminum alloy castings; typical mechanical properties of wrought and cast aluminum alloys in various temper conditions; and cross references to former and current cast aluminum alloy designations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
...Abstract Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system...
Abstract
Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify alloying elements, compositional modifications, purity levels, and product types. It also uses a multicharacter code to convey process-related details on heat treating, hardening, cooling, cold working, and other stabilization treatments. The article includes several large tables that provide extensive information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
...Abstract Abstract This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article...
Abstract
This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article discusses distortion and dimensional variation and machining problems during the machining of high-silicon aluminum alloy. It also provides information on tool design and material, speed and feed, and the cutting fluid used for various machining processes, namely, turning, boring, planing and shaping, broaching, reaming, tapping, milling, sawing, grinding, honing, and lapping. The article concludes with a discussion on drilling operations in automatic bar and chucking machines and drill presses.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... potential of aluminum alloys in NaCl-H 2 O 2 solution Aluminum alloy (a) Potential volts 0.1 N calomel scale (b) Filler alloy A712.0 −0.99 … Alclad 3003, alclad 6061, 7072 −0.96 … 7005-T6, 7039-T6 −0.93 to −0.96 … 5083, 5456, 514.0 −0.87 5183, 5356, 5556 5154, 5254, 5454...
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
...General guidelines on product thickness of aluminum alloys for joining by various welding processes Table 1 General guidelines on product thickness of aluminum alloys for joining by various welding processes Process Minimum thickness Maximum thickness or area mm in. mm...
Abstract
Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity, and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included, mainly in the general factors associated with service weldability (fitness). The article also provides a discussion on the selection and weldability of non-heat-treatable aluminum alloys, heat treatable aluminum alloys, aluminum-lithium alloys, and aluminum metal-matrix composites.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
...Comparative corrosion and fabrication characteristics and typical applications of wrought aluminum alloys Table 1 Comparative corrosion and fabrication characteristics and typical applications of wrought aluminum alloys Alloy temper Resistance to corrosion Workability cold (e...
Abstract
Aluminum mill products are those that have been subjected to plastic deformation by hot- and cold-working mill processes such as rolling, extruding, and drawing, either singly or in combination. Microstructural changes associated with the working and with any accompanying thermal treatments are used to control certain properties and characteristics of the worked, or wrought, product or alloy. This article discusses the designation system, classification, product forms, corrosion and fabrication characteristics, and applications of wrought aluminum alloys. Commercial wrought aluminum products are divided into flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; shapes; and forgings. The article discusses factors affecting the strengthening mechanisms, fracture toughness, and physical properties of aluminum alloys, in addition to the effects of alloying on the physical and mechanical properties. Important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003126
EISBN: 978-1-62708-199-3
...Abstract Abstract This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect...
Abstract
This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect of temperatures on tensile strength, yield strength, and elongation, and the mechanical properly limits for aluminum alloy die forgings, non-heat-treatable and heat-treatable aluminum alloy sheets and plates, and non-heat-treatable aluminum alloy extruded wires, rods, bars, and shapes.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
...Abstract Abstract This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones...
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001418
EISBN: 978-1-62708-173-3
...Abstract Abstract Non-heat-treatable aluminum alloys constitute a group of alloys that rely solely upon cold work and solid solution strengthening for their strength properties. This article focuses on the weldability and weld properties of different classes on non-heat-treatable aluminum...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
...Abstract Abstract Aluminum alloys, particularly the heat-treatable alloys, are sensitive to weld cracking. Anticipation of these characteristics and general knowledge of these materials assist in selection of suitable method for welding heat-treatable aluminum alloys. This article provides...
Abstract
Aluminum alloys, particularly the heat-treatable alloys, are sensitive to weld cracking. Anticipation of these characteristics and general knowledge of these materials assist in selection of suitable method for welding heat-treatable aluminum alloys. This article provides a general description of the metallurgy, characteristics, and applications of heat-treatable aluminum alloys and a detailed discussion on the characteristics of heat-treatable aluminum alloys, their resulting impact on the weld quality and property, along with the methods of avoiding or reducing the impacts. The impact created in the weld quality includes crack sensitivity, liquation cracking, porosity, and heat-affected zone degradation. The article provides an overview of filler alloy selection for reducing weld crack sensitivity and increasing weld strength, ductility, and corrosion resistance in the welds of heat-treatable aluminum alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
...Abstract Abstract This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength...
Abstract
This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength wrought aluminum products. It analyzes the selection of various alloys for stress-corrosion cracking resistance, including aluminum-lithium alloys, copper-free 7XXX alloys, and casting alloys. The article presents a list of typical tensile properties and fatigue limit of aluminum alloys. It also describes the effects of composition, microstructure, thermal treatments, and processing in fatigue crack growth of aluminum alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006534
EISBN: 978-1-62708-207-5
...Abstract Abstract This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including...
Abstract
This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including extrusion speed and exit temperature, and their effect on product quality. The article also provides information on extrusion presses, press dies, and tooling, and addresses quality issues such as surface defects, blistering, and internal cracking. It concludes with a discussion on the drawing of solid section and aluminum tube.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006626
EISBN: 978-1-62708-210-5
...Typical physical properties of wrought aluminum alloys (engineering units) Table 1 Typical physical properties of wrought aluminum alloys (engineering units) Alloy Temper Density, lb/in. 3 Specific gravity Thermal expansion coefficient, 10 −6 ·1/°F Melting range, °F Thermal...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003123
EISBN: 978-1-62708-199-3
...Abstract Abstract More than 450 alloy designations/compositions have been registered by the Aluminum Association (AA) Inc. for aluminum and aluminum alloys. This article contains tables that list the designations and composition limits of wrought unalloyed aluminum and wrought aluminum alloys...
Abstract
More than 450 alloy designations/compositions have been registered by the Aluminum Association (AA) Inc. for aluminum and aluminum alloys. This article contains tables that list the designations and composition limits of wrought unalloyed aluminum and wrought aluminum alloys, and designations and composition limits for aluminum alloys in the form of castings and ingot. It provides helpful information on the Unified Numbering System (UNS) numbers and its corresponding AA numbers for aluminum and aluminum alloys, and the international alloy designations cross-referenced to its equivalent compositions of wrought AA alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003125
EISBN: 978-1-62708-199-3
...Abstract Abstract This article discusses the classification, characteristics and temper designations of wrought aluminum alloys. Wrought aluminum products are available as flat-rolled products such as sheets, plates, and foils; rods, bars, and wires; tubular products such as tubes and pipes...
Abstract
This article discusses the classification, characteristics and temper designations of wrought aluminum alloys. Wrought aluminum products are available as flat-rolled products such as sheets, plates, and foils; rods, bars, and wires; tubular products such as tubes and pipes; extruded shapes; forgings; and impacts. The article provides information on product economics, design and selection, including product dimension and dimension tolerances, and design and use of wrought product capabilities. Finally, it tabulates the specifications and standards for aluminum mill products.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003130
EISBN: 978-1-62708-199-3
...Abstract Abstract This article discusses the corrosion resistance of aluminum and aluminum alloys in various environments, such as in natural atmospheres, fresh waters, seawater, and soils, and when exposed to chemicals and their solutions and foods. It describes the forms of corrosion...
Abstract
This article discusses the corrosion resistance of aluminum and aluminum alloys in various environments, such as in natural atmospheres, fresh waters, seawater, and soils, and when exposed to chemicals and their solutions and foods. It describes the forms of corrosion of aluminum and aluminum alloys, including pitting corrosion, intergranular corrosion, exfoliation corrosion, galvanic corrosion, stray-current corrosion, deposition corrosion, crevice corrosion, filiform corrosion, stress-corrosion cracking, corrosion fatigue, and hydrogen embrittlement. The article also presents a short note on aluminum clad products and corrosion at joints.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006624
EISBN: 978-1-62708-210-5
... limits for wrought aluminum alloys Notes to the nominal compositions and composition limits for wrought aluminum alloys Indicator Definition (a) Both nominal compositions and composition limits are shown. Nominal values are midrange of limits for elements for which a composition range...