Skip Nav Destination
Close Modal
By
Joseph R. Pickens
By
Olaf Engler, Kai Karhausen, Jürgen Hirsch
By
Robert Sanders, James Staley
By
Somnath Ghosh, Ming Li
By
Greg Courval
By
John Weritz, S. Lampman
By
Mangesh V. Pantawane, Sameehan S. Joshi, Narendra B. Dahotre
Search Results for
aluminum alloy 5182
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 59
Search Results for aluminum alloy 5182
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Book Chapter
5182 Sheet Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006700
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and tensile properties, and applications of sheet alloy 5182. aluminum alloy 5182 aluminum sheet alloys fabrication characteristics physical properties...
Abstract
This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and tensile properties, and applications of sheet alloy 5182.
Image
Heated die system for warm stamping of aluminum alloys. (a) Schematic diagr...
Available to PurchasePublished: 30 November 2018
Fig. 18 Heated die system for warm stamping of aluminum alloys. (a) Schematic diagram of warm forming dies. (b) Schematic of formed sheet part. (c) Chrysler Neon door inner panel successfully formed at 350 °C (660 °F) using aluminum alloy 5182 plus manganese sheet. Source: Ref 7
More
Image
Published: 01 January 2006
Fig. 46 Normalized flow stress and r -value experimentally measured and calculated using Yld2000-2d and Yld2004-18p yield functions as a function of the angle between the rolling and tensile directions for an aluminum alloy 5182-O sheet sample
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005166
EISBN: 978-1-62708-186-3
... of springback angle on gap for aluminum alloy 6111. C / t , clearance ratio. Source: Ref 8 Fig. 13 Dependence of springback angle on gap for aluminum alloy 5182. Source: Ref 9 Fig. 14 Summary of the general trends of die corner radius, punch-nose corner radius, gap, and binder force...
Abstract
Flanging is a process used to form a projecting rim or edge on a part. This article explores how to determine aluminum flanging limits in terms of fracture, wrinkling, and springback, and their influencing material and process parameters with examples.
Image
Comparison of burr heights for 5182-H19 and 6022-T4 aluminum alloys for 0° ...
Available to PurchasePublished: 01 November 2010
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003223
EISBN: 978-1-62708-199-3
... production are cadmium, bismuth, and lead in concentrations less than 0.01%. Today's popular aluminum alloy 5182 for car body panels contains too many potentially dirty elements to recycle it into another grade of sheet. Likewise, automotive grades 5052 and 6061 pose a barrier to recycling because...
Abstract
Product design greatly influences the recycling and reuse of manufacturing materials. This article presents a design for recycling strategy based on ease of disassembly, minimizing process scrap, using readily recyclable materials, and labelling or otherwise identifying parts. It also discusses the concept of life-cycle analysis (LCA), a quantitative accounting of the environmental and economic costs of using a given material and the energy required to make, distribute, operate, and eventually dispose of the host product and its constituent materials. An important but often overlooked step in the LCA process is to identify potential improvement pathways.
Image
(a) Forming sequence for conversion of alloy 5182 coated end stock shell in...
Available to Purchase
in A History of Wrought Aluminum Alloys and Applications
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 26 (a) Forming sequence for conversion of alloy 5182 coated end stock shell into a finished can end. (b) Cross section of an integral rivet on an alloy 5182 aluminum can end showing severe metal forming that occurs during conversion
More
Book Chapter
Hot Working Simulation by Hot Torsion Testing
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009012
EISBN: 978-1-62708-185-6
... costs. A slice of an EMC ingot of aluminum-magnesium alloy 5182 was purchased from a company that was casting the alloy by EMC. Visual inspection of the ingot clearly showed superior surface finish relative to conventional -chill-cast (DC) ingots. In addition, metallographic evaluation revealed...
Abstract
This article summarizes the types of hot working simulation tests such as hot tension, compression, and torsion testing used in the assessment of workability. It illustrates the use of hot torsion testing for the optimization of hot working processes. The article concludes with information on some hot torsion application examples.
Image
Heated die system for warm stamping of aluminum alloys. (a) Schematic diagr...
Available to PurchasePublished: 01 January 2006
Fig. 44 Heated die system for warm stamping of aluminum alloys. (a) Schematic diagram of warm forming dies. (b) Schematic of formed sheet part. (c) Chrysler Neon door inner panel successfully formed at 350 °C (660 °F) using aluminum 5182 plus manganese sheet
More
Book Chapter
Simulation of Microstructure and Texture Evolution in Aluminum Sheet
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005408
EISBN: 978-1-62708-196-2
...), the higher-strength alloy AA 5182 (UNS A95182) with approximately 5% Mg is used. Figure 1 illustrates the conventional fabrication route for aluminum can stock. It consists of casting of large ingots, a two-step homogenization, breakdown hot rolling to 20 to 40 mm transfer slab gage, tandem hot rolling...
Abstract
This article explores the potential of through-process simulations of the development of microstructure, texture, and resulting properties during the thermomechanical processing of Al-Mn-Mg alloys, starting from the as-cast ingot to final-gage sheet. It provides an introduction of the thermomechanical production of aluminum sheet and, in particular, highlights the main effects governing the evolution of microstructure and texture. The simulation tools used to model the evolution of microchemistry, microstructure, and texture upon deformation and recrystallization of aluminum alloys are described. The article discusses the recrystallization behavior of alloy AA 3104 during the interstand times in between two consecutive hot rolling passes with the help of combined microstructure models.
Book Chapter
A History of Wrought Aluminum Alloys and Applications
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... Abstract The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different...
Abstract
The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different series of wrought aluminum alloys (1xxx to 8xxx) and discusses their applications based on the alloying system introduced by the Aluminum Association.
Book Chapter
Modeling Sheet Shearing Processes for Process Design
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
... in Fig. 4 for aluminum alloys 1050-H18, 3004-H19, and 5182-H19. In this work, the critical clearance, c cr , was related to the material Young's modulus, E , yield strength, σ y , and maximum fracture strain, ε f , as: (Eq 1) c cr = 0.004 E t σ y 1 ε f ( α...
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005222
EISBN: 978-1-62708-187-0
... liquid pools, shrinkage generates pores filled with gases. It is the interplay of these two mechanisms that gives rise to porosity in a casting. Figure 1 illustrates gas porosity and shrinkage porosity in an aluminum AA 5182 remelt secondary ingot. Gas porosity is usually spherical...
Abstract
This article provides a detailed discussion on the causes of formation of shrinkage porosity and gas porosity along with the methods involved in eliminating them. It discusses the process of porosity formation and the factors affecting porosity formation, including alloy composition, external pressure, and cooling conditions.
Book Chapter
Corrosion of Aluminum Components in the Automotive Industry
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004166
EISBN: 978-1-62708-184-9
... environments when properly designed and manufactured with appropriate alloys. This article provides an overview of the principle forms of corrosion that can occur on automotive aluminum components and offers general guidelines on how best to avoid these situations. To this end, it is more informative...
Abstract
This article provides an overview of the principle forms of corrosion that can occur on automotive aluminum components and offers general guidelines on how best to avoid these situations. It discusses the most common forms of aluminum corrosion such as stress-induced corrosion, cosmetic corrosion, crevice corrosion, and galvanic corrosion.
Book Chapter
5454 High-Strength Al-Mg-Mn-Cr Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006702
EISBN: 978-1-62708-210-5
... properties, and fabrication characteristics of this 5xxx series alloy. aluminum alloy 5454 aluminum-magnesium-manganese-chromium solid solution alloys chemical and process industries chemical handling fabrication characteristics mechanical properties physical properties The composition...
Abstract
Alloy 5454 is an Al-Mg-Mn-Cr solid solution alloy with relatively high strength used for handling chemicals at elevated temperatures in the chemical and process industries. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 5xxx series alloy.
Book Chapter
Wrought Aluminum Processes and Products
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006518
EISBN: 978-1-62708-207-5
... the various product forms in which commonly used wrought aluminum alloys are available. The article also provides design guidelines for aluminum extrusions and discusses various forming methods. aluminum wrought products extrusions forgings forming wrought aluminum alloys ALUMINUM wrought...
Abstract
This article introduces the basic characteristics, processes, and product forms associated with the five major categories of aluminum wrought products, namely, flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; profiles; and forgings. It summarizes the various product forms in which commonly used wrought aluminum alloys are available. The article also provides design guidelines for aluminum extrusions and discusses various forming methods.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006487
EISBN: 978-1-62708-207-5
... Abstract Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses...
Abstract
Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses the annealing of worked structures in terms of recovery, recrystallization, and grain coarsening. It summarizes some of the annealing treatments used in conjunction with fabrication by metal working, including preheating, interannealing, self-annealing, stabilization, and stoving. The article concludes with information on the key process parameters affecting the final properties of aluminum alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003222
EISBN: 978-1-62708-199-3
... identification of metals and alloys by magnetic response Table 4 Preliminary identification of metals and alloys by magnetic response Response Metal or alloy Strongly magnetic Cast irons, steels, 400 stainless steels, nickel, cobalt Slightly magnetic Monel (not K or S Monel), aluminum bronze...
Abstract
This article focuses on the recycling of metals including iron and steel, stainless steel, superalloys, nickel, aluminum, copper, precious metals, lead, magnesium, tin, titanium, and zinc. It provides information on the identification and sorting of scrap metals and discusses the equipment and procedures used for small-scale and large-scale scrapping operations.
Book Chapter
Laser Beam Machining of Aluminum and Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006532
EISBN: 978-1-62708-207-5
... Abstract This article focuses on a variety of laser beam machining (LBM) operations of aluminum and its alloys, namely, laser cutting, laser drilling, laser milling, laser turning, laser grooving, laser scribing, laser marking, and laser micromachining. It presents different approaches...
Abstract
This article focuses on a variety of laser beam machining (LBM) operations of aluminum and its alloys, namely, laser cutting, laser drilling, laser milling, laser turning, laser grooving, laser scribing, laser marking, and laser micromachining. It presents different approaches for carrying out machining operations, laser processing parameters, efficiency and accuracy of the process, and the effect of laser processing parameters on the quality of the machined surface. The article provides an overview of the various conventional (chip forming) and nonconventional machining techniques employed for aluminum-based materials. A comparison of the various aspects of LBM with other non-conventional techniques is also presented. The article also describes the features of LBM techniques employed for aluminum and its alloys for different types of machining.
1