Skip Nav Destination
Close Modal
Search Results for
aluminum alloy 5005
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 69 Search Results for
aluminum alloy 5005
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006693
EISBN: 978-1-62708-210-5
... specifications, processing effects on physical and mechanical properties, and fabrication characteristics of this 5xxx series alloy. aluminum alloy 5005 aluminum mill products architectural sheet corrosion-resistant siding materials fabrication characteristics mechanical properties mobile-home...
Abstract
Alloy 5005, available as architectural sheet and components, was introduced in 1935 to fill the need of the mobile-home industry for a lightweight, inexpensive, workable, corrosion-resistant siding material. This datasheet provides information on composition limits, mill product specifications, processing effects on physical and mechanical properties, and fabrication characteristics of this 5xxx series alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
... Abstract This article provides a comprehensive matrix for selecting an aluminum filler alloy for the gas tungsten arc and gas metal arc welding processes, based on the various requirements or service conditions. A table lists the nominal strengths of aluminum filler metals. aluminum...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006694
EISBN: 978-1-62708-210-5
... Abstract The general-purpose alloy 5050 is a binary aluminum-magnesium alloy with more magnesium content than 5005. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 5xxx series alloy...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... Table 4 Filler alloys for welding selected aluminum alloys used for sustained elevated-temperature service Aluminum alloys Acceptable filler alloys Wrought Cast 1 xxx series … Base alloy, 1100, 1188, 4043, 4047 2014, 2219 222.0, 295.0, 319.0, 333.0 2319, 4043, 4145 3003, 5005...
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001436
EISBN: 978-1-62708-173-3
... Aluminum alloys Acceptable filler alloys Wrought Cast 1 xxx series … Base alloy, 1100, 1188, 4043, 4047 2014, 2219 222.0, 295.0, 319.0, 333.0 2319, 4043, 4145 3003, 5005, 5050 … 1100, 4043, 4047 5052, 5454, 6061, 6063, 7005 … 4043, 4047, 5554 … 354.0, 355.0, C355.0 4009...
Abstract
Aluminum and its alloys can be joined by as many or more methods than any other metal. This article discusses the properties of aluminum, namely hydrogen solubility, electrical conductivity, and thermal characteristics. It analyses the primary factors commonly considered when selecting a welding filler alloy. These include ease of welding or freedom from cracking, tensile or shear strength of the weld, weld ductility, service temperature, corrosion resistance, and color match between the weld and base alloy after anodizing. The article provides a detailed description of gas-shielded arc welding processes for welding of aluminum alloys and also reviews other welding processes such as oxyfuel gas welding and laser-beam welding.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Abstract
The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1). This article provides a detailed discussion on the alloy and temper designation system for aluminum and its alloys. The Aluminum Association alloy designations are grouped as wrought and cast alloys. Lengthy tables provide information on alloying elements in wrought aluminum and aluminum alloys; nominal composition of aluminum alloy castings; typical mechanical properties of wrought and cast aluminum alloys in various temper conditions; and cross references to former and current cast aluminum alloy designations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify...
Abstract
Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify alloying elements, compositional modifications, purity levels, and product types. It also uses a multicharacter code to convey process-related details on heat treating, hardening, cooling, cold working, and other stabilization treatments. The article includes several large tables that provide extensive information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel...
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003126
EISBN: 978-1-62708-199-3
... Abstract This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect...
Abstract
This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect of temperatures on tensile strength, yield strength, and elongation, and the mechanical properly limits for aluminum alloy die forgings, non-heat-treatable and heat-treatable aluminum alloy sheets and plates, and non-heat-treatable aluminum alloy extruded wires, rods, bars, and shapes.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
... Abstract This article presents a table that lists the linear thermal expansion of selected metals and alloys. These include aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc and their alloys. Thermal expansion is presented for specific temperature ranges. linear...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
... Abstract Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity...
Abstract
Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity, and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included, mainly in the general factors associated with service weldability (fitness). The article also provides a discussion on the selection and weldability of non-heat-treatable aluminum alloys, heat treatable aluminum alloys, aluminum-lithium alloys, and aluminum metal-matrix composites.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
... Abstract This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article...
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
... Abstract This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article...
Abstract
This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article discusses distortion and dimensional variation and machining problems during the machining of high-silicon aluminum alloy. It also provides information on tool design and material, speed and feed, and the cutting fluid used for various machining processes, namely, turning, boring, planing and shaping, broaching, reaming, tapping, milling, sawing, grinding, honing, and lapping. The article concludes with a discussion on drilling operations in automatic bar and chucking machines and drill presses.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003750
EISBN: 978-1-62708-177-1
... as the apparatus used. It discusses selected etchants for efficient macroetching of various metals and their alloys, including iron, steel, high-alloy steels, stainless steels, high-temperature alloys, titanium, titanium alloys, aluminum, aluminum alloys, copper, and copper alloys. The article also describes...
Abstract
Macroetching is a procedure for revealing the large-scale structure of a metallic specimen, that is, the structure visible with the unaided eye, by etching an appropriately prepared surface. This article provides information on the basic procedures for macroetching as well as the apparatus used. It discusses selected etchants for efficient macroetching of various metals and their alloys, including iron, steel, high-alloy steels, stainless steels, high-temperature alloys, titanium, titanium alloys, aluminum, aluminum alloys, copper, and copper alloys. The article also describes various conditions that are revealed by the macroetching of aluminum.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
... treatments are used to control certain properties and characteristics of the worked, or wrought, product or alloy. This article discusses the designation system, classification, product forms, corrosion and fabrication characteristics, and applications of wrought aluminum alloys. Commercial wrought aluminum...
Abstract
Aluminum mill products are those that have been subjected to plastic deformation by hot- and cold-working mill processes such as rolling, extruding, and drawing, either singly or in combination. Microstructural changes associated with the working and with any accompanying thermal treatments are used to control certain properties and characteristics of the worked, or wrought, product or alloy. This article discusses the designation system, classification, product forms, corrosion and fabrication characteristics, and applications of wrought aluminum alloys. Commercial wrought aluminum products are divided into flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; shapes; and forgings. The article discusses factors affecting the strengthening mechanisms, fracture toughness, and physical properties of aluminum alloys, in addition to the effects of alloying on the physical and mechanical properties. Important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006486
EISBN: 978-1-62708-210-5
... equipment, for example, a shear or brake press. Nominal strengths of some wrought aluminum products used in structural design Table 2 Nominal strengths of some wrought aluminum products used in structural design Alloy Temper ASTM specification, product Thickness mm Thickness in. Tensile...
Abstract
Aluminum wrought products, castings, welds, and fasteners are used in many structural applications where they are required to safely support a load. It is useful to design aluminum structural components with its structural properties in mind from conceptualization rather than attempting to mimic components of other materials. This article discusses design specifications, design requirements and methods, and material properties used in aluminum structural design. These properties include tensile yield strength and tensile ultimate strength, welding, and ductility. The article describes various factors that affect the strength of two categories of aluminum structural components, namely members and connections. Design requirements for aluminum bolts, rivets, screws, and pins are provided. The article concludes with a discussion on the considerations for serviceability, namely deflections and vibrations.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.9781627082105
EISBN: 978-1-62708-210-5
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
... Abstract This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength wrought...
Abstract
This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength wrought aluminum products. It analyzes the selection of various alloys for stress-corrosion cracking resistance, including aluminum-lithium alloys, copper-free 7XXX alloys, and casting alloys. The article presents a list of typical tensile properties and fatigue limit of aluminum alloys. It also describes the effects of composition, microstructure, thermal treatments, and processing in fatigue crack growth of aluminum alloys.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
... Aluminum (99.996%) 2.6989 0.0975 Wrought alloys EC, 1060 alloys 2.70 0.098 1100 2.71 0.098 2011 2.82 0.102 2014 2.80 0.101 2024 2.77 0.100 2218 2.81 0.101 3003 2.73 0.099 4032 2.69 0.097 5005 2.70 0.098 5050 2.69 0.097 5052 2.68 0.097 5056...
Abstract
This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals, and rare earth metals is also listed.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006543
EISBN: 978-1-62708-183-2
..., and their alloys. aluminum copper corrosion rate density iron lead magnesium stainless steels DENSITY allows for conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time, to thickness per unit time. These density values are for room-temperature. Density...
Abstract
Density allows for the conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time to thickness per unit time. This article contains a table that lists the density of metals, such as aluminum, copper, iron, stainless steel, magnesium, and lead, and their alloys.
1