1-20 of 37 Search Results for

aluminum alloy 360.0

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006571
EISBN: 978-1-62708-210-5
..., processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg general-purpose die-casting alloys 360.0 and A360.0. Reference Reference 1. Kaufman J.G. and Rooy E.L. , Aluminum Alloy Castings: Properties, Processes, and Applications , ASM...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006273
EISBN: 978-1-62708-169-6
... 360.0 (AlSi10Mg) bal 9.0–11.0 0.2–0.45 0.55 0.1 0.05 0.45 … 0.15 DISPAL S270 bal 23.6 0.4 4.4 … 1.0 0.5 … (3.0) Nitriding temperatures of 0.8 to 0.9 T S (solidification temperature) for aluminum alloys are clearly higher than those for ferrous alloys. They are above...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001062
EISBN: 978-1-62708-162-7
...Abstract Abstract This article is a compilation of property data for standard grades of cast aluminum alloys. Data are provided for mechanical, thermal, and electrical properties. The listing for each alloy includes commercial names, chemical compositions, applications, relevant specifications...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
...Nominal composition and melting range of standard aluminum welding and brazing filler alloys Table 1 Nominal composition and melting range of standard aluminum welding and brazing filler alloys Aluminum alloy (a) Nominal composition, wt% Approximate melting range Si Cu Mn Mg Cr...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006572
EISBN: 978-1-62708-210-5
... that requires high-fatigue strength and corrosion resistance. Alloy 362.0 (UNS A03620) is a high-performance, low-iron, die-casting alloy that relies on strontium for die-soldering resistance ( Table 1 ). The iron content in 362.0 is lower than 360.0 to minimize the formation of needle-like, Al-Fe-Si phases...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
...Typical mechanical properties (in customary units) of wrought aluminum alloys in various temper conditions Table 4 Typical mechanical properties (in customary units) of wrought aluminum alloys in various temper conditions Alloy and temper (a) Tension Hardness, Brinell No., 500 kg load...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
...Abstract Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... flanges for maximum energy absorption during impact. Aluminum-silicon-copper alloys such as 308.0, 319.0, 360.0, 380.0, and 384.0 offer good casting characteristics, higher strength and hardness, and improved machinability with reduced ductility and lower resistance to corrosion. These and similar...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
...Abstract Abstract This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006579
EISBN: 978-1-62708-210-5
... castability. Its melting range is 575–585 °C (1065–1085 °F). It has high fluidity in the molten state and is a most readily castable alloy. It is, however, subject to abrupt solidification when approaching the setting point and is less suitable for cold-chamber die casting machines than Aluminum 360.0...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
... of aluminum die casting alloys Table 5 Characteristics of aluminum die casting alloys See Table 3 for other characteristics. Alloy Resistance to die soldering (a) Die filling capacity 360.0 2 3 A360.0 2 3 380.0 1 2 A380.0 1 2 383.0 2 1 384.0 2 1 413.0 1 1...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006625
EISBN: 978-1-62708-210-5
...) Ingot; 1.5 min Fe/Si ratio. (f) Also contains 0.40–1.0% Ag (0.7% nominal). (g) Also contains 0.20–0.30% Sb (0.25% nominal), 0.20–0.30% Co (0.25% nominal), and 0.10–0.30% Zr. Ti + Zr contents = 0.50% max. (h) Alloy has been designated “Inactive” by The Aluminum Association but still occurs...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... Al-Si-Mg die casting alloys: 360.0, A360.0, 361.0, 364.0, and 369.0 Al-Si-Mg-Cu die casting alloys: 390.0, B390.0, 392.0, and 393.0 Aluminum-silicon die casting alloys: 413.0, A413.0, and C443.0 Aluminum-magnesium die casting alloys: 515.0, 516.0, and 518.0 Representative alloys...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
...Relative characteristics of aluminum alloys used in sand, permanent mold, and die casting Table 2 Relative characteristics of aluminum alloys used in sand, permanent mold, and die casting Rating scheme: 1, best; 5, worst. Individual alloys may have different ratings for other casting...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003123
EISBN: 978-1-62708-199-3
...Abstract Abstract More than 450 alloy designations/compositions have been registered by the Aluminum Association (AA) Inc. for aluminum and aluminum alloys. This article contains tables that list the designations and composition limits of wrought unalloyed aluminum and wrought aluminum alloys...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
...Abstract Abstract This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
...Abstract Abstract Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
...Abstract Abstract Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003192
EISBN: 978-1-62708-199-3
... steels, wrought Cast irons—gray, ductile, and malleable Aluminum alloys, wrought and cast Titanium alloys, wrought Nickel-base, high-temperature alloys, wrought and cast. Turning, free-machining low-carbon steels, wrought Table 1 Turning, free-machining low-carbon steels, wrought...