1-20 of 72 Search Results for

aluminum alloy 356.0

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2016
Fig. 47 High-temperature aging characteristics for aluminum alloy 356.0-F, permanent mold More
Image
Published: 01 June 2016
Fig. 48 High-temperature aging characteristics for aluminum alloy 356.0-T4 solution heat treated 15 h at 540 °C (1000 °F), quenched in 65 °C (150 °F) water, and held 24 h at room temperature. (a) Sand cast. (b) Permanent mold More
Image
in 356.0 and A356.0[1]: Al-Si-Mg High-Strength Casting Alloys > Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 4 Room-temperature aging characteristics for aluminum alloy 356.0-T4. Source: Ref 3 More
Image
in 356.0 and A356.0[1]: Al-Si-Mg High-Strength Casting Alloys > Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 5 Growth and hardness curves for aluminum alloy 356.0-T4, permanent mold. Specimen: 28.575 diam × 305 mm (1.125 diam × 12 in.) rod. Treatment: 12 h at 525 °C (980 °F) boiling water quench. Comparison of sand cast and permanent mold. Source: Ref 4 More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006568
EISBN: 978-1-62708-210-5
... castings as a function of solution time; and room-temperature aging characteristics for aluminum alloy 356.0-T4. Growth and hardness curves for aluminum alloy 356.0-T4 are also presented. aging characteristics aluminum alloy 356.0 aluminum alloy A356.0 aluminum-silicon-magnesium alloys Charpy...
Image
Published: 01 December 2008
Fig. 5 Overload fracture through a type 356.0 aluminum alloy in the T6 condition. Original magnification: 500×. Courtesy of Stork Technimet, Inc. New Berlin, WI More
Image
Published: 01 December 2008
Fig. 13 Fatigue fracture through a type 356.0 aluminum alloy in the T6 condition. Original magnification: 500×. Courtesy of Stork Technimet, Inc. New Berlin, WI More
Image
Published: 01 December 2008
Fig. 14 Fatigue fracture through a type 356.0 aluminum alloy in the T6 condition. Original magnification: 5000×. Courtesy of Stork Technimet, Inc. New Berlin, WI More
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000620
EISBN: 978-1-62708-181-8
... alloys connecting rods fatigue striations fractograph shrinkage cavities shrinkage porosity Fig. 921 A portion of a fractured carrier tray and sand cast of an aluminum alloy intended to be 356.0-T6. Chemical analysis revealed that the copper and zinc contents were of an order of magnitude...
Image
Published: 01 December 2004
Fig. 30 Fracture profile from etched transverse microsection of two aluminum-silicon alloys. (a) Alloy 356.0 alloy at a magnification of 50×. (b) Alloy 390.0 at a magnification of 500×. Both etched with reagent 5m ( Table 4 ) More
Image
Published: 01 January 1990
Fig. 13 Comparison of (a) notch yield ratio and (b) unit propagation energy versus yield strength for various aluminum alloy premium-quality castings and wrought aluminum alloy plate. 1, XA201.0-T7; 2, 249.0-T7; 3, 224.0-T7; 4, C355.0-T6; 5, 354.0-T6; 6, A356.0-T6; 7, 356.0-T6; 8, A357.0-T6 More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... Abstract This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
..., the Aluminum Association designation system is the most commonly used, although it remains relatively common to see the alloys listed with only the first three digits of the alloy designation; for example, for 356.0, one may see simply “356.” This is not technically proper usage of the designation system...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006569
EISBN: 978-1-62708-210-5
... characteristics of Al-Si-Mg high-strength casting alloys. aluminum alloy 357.0 aluminum-silicon-magnesium alloys fabrication characteristics high-strength casting alloys mechanical properties physical properties Alloy 357.0 is similar to alloy 356.0, but it has a larger amount of magnesium, which...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005342
EISBN: 978-1-62708-187-0
... 380.0 aluminum alloy in the as-cast condition. Original magnification: 1000×. Courtesy of Stork Technimet, Inc. New Berlin, WI Fig. 5 Overload fracture through a type 356.0 aluminum alloy in the T6 condition. Original magnification: 500×. Courtesy of Stork Technimet, Inc. New Berlin, WI...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... castings include 319.0, 355.0, 356.0, 514.0, and 535.0. Specifications for sand-cast aluminum alloys are cross referenced in Table 1 . Shell Mold Casting In this process the mold cavity is formed by a shell of resin-bonded sand only 10 to 20 mm (0.4 to 0.8 in.) thick—much thinner and lighter than...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
... Abstract Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006560
EISBN: 978-1-62708-210-5
... Abstract Alloy 296.0 is an aluminum permanent-mold casting alloy with higher silicon than 295.0, which reduces shrinkage and improves fluidity. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties...