1-20 of 44 Search Results for

aluminum alloy 333.0

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 15 June 2019
Fig. 1 Growth and hardness curves for aluminum alloy 333.0-F, permanent mold. Specimen: 28.575 diam × 305 mm (1.125 diam × 12 in.) rod. Source: Ref 1 More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006564
EISBN: 978-1-62708-210-5
... characteristics, and application characteristics of these 3xxx series alloys. age-hardenable permanent mold casting alloys aluminum alloy 333.0 aluminum alloy A333.0 fabrication characteristics high-temperature applications mechanical properties physical properties pressure tightness Alloys...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... Table 4 Filler alloys for welding selected aluminum alloys used for sustained elevated-temperature service Aluminum alloys Acceptable filler alloys Wrought Cast 1 xxx series … Base alloy, 1100, 1188, 4043, 4047 2014, 2219 222.0, 295.0, 319.0, 333.0 2319, 4043, 4145 3003, 5005...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006565
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 336.0 is a high-silicon alloy suitable for applications where good high-temperature strength, low coefficient of thermal expansion, and good resistance to wear are required. This datasheet provides information on key alloy metallurgy, processing effects on physical...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... A356.0 trailer suspension saddle Aluminum-silicon-copper-magnesium alloys such as 328.0. 333.0, 354.0, 355.0, and C355.0 offer excellent strength and hardness with some sacrifice in ductility and corrosion resistance. Casting characteristics are good but inferior to those displayed by copper-free...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006623
EISBN: 978-1-62708-210-5
... Abstract This article provides a comprehensive matrix for selecting an aluminum filler alloy for the gas tungsten arc and gas metal arc welding processes, based on the various requirements or service conditions. A table lists the nominal strengths of aluminum filler metals. aluminum...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
... Abstract This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... fittings Other aluminum alloys commonly used for permanent mold castings include 296.0, 319.0, and 333.0. Specifications for permanent mold castings are cross referenced in Table 1 . Cross-reference chart of frequently used specifications for aluminum alloy sand and permanent mold (PM) castings...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006625
EISBN: 978-1-62708-210-5
... Abstract This article contains a table that lists the values of nominal compositions and composition limits of aluminum alloy castings. alloy nominal composition aluminum alloy castings The compositions in this table are based on industry handbooks, notably The Aluminum...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
... Abstract Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001436
EISBN: 978-1-62708-173-3
... Aluminum alloys Acceptable filler alloys Wrought Cast 1 xxx series … Base alloy, 1100, 1188, 4043, 4047 2014, 2219 222.0, 295.0, 319.0, 333.0 2319, 4043, 4145 3003, 5005, 5050 … 1100, 4043, 4047 5052, 5454, 6061, 6063, 7005 … 4043, 4047, 5554 … 354.0, 355.0, C355.0 4009...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006567
EISBN: 978-1-62708-210-5
..., and application characteristics of these 3xxx series alloys. aluminum alloy 355.0 aluminum alloy C355.0 fabrication characteristics heat treatment high-strength alloys mechanical properties physical properties Used in sand and permanent mold (PM) casting, alloys 355.0 and C355.0 ( Table 1...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
... Table 5 Filler alloys recommended for welding selected aluminum-base alloys to minimize sensitivity to weld cracking Base metal 319.0, 333.0, 354.0, 355.0, C355.0, 380.0 356.0, A356.0, A357.0, 359.0, 413.0, A444,0, 443.0 511.0, 512.0, 513.0, 514.0 7005 (a) , 7039, 710.0, 711.0, 712.0 6070...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... Abstract This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
... Abstract Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... Abstract This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
... Abstract This article focuses on the aging characteristics of solution and precipitation heat treated aluminum alloy systems and their corresponding types. It includes information on aluminum-copper systems, aluminum-copper-magnesium systems, aluminum-magnesium-silicon systems, aluminum-zinc...