1-20 of 57 Search Results for

aluminum alloy 2618

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006616
EISBN: 978-1-62708-210-5
... temperature on tensile properties and the influence of temperature on compressive yield strength of alloy 2618-T61 hand-forged billets are illustrated. aluminum alloy 2618 aluminum alloy 2618A aluminum-copper-magnesium-nickel alloys compressive yield strength creep-rupture properties fabrication...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004002
EISBN: 978-1-62708-185-6
... Aluminum alloy Forging temperature range °C °F 1100 315–405 600–760 2014 420–460 785–860 2025 420–450 785–840 2219 425–470 800–880 2618 410–455 770–850 3003 315–405 600–760 4032 415–460 780–860 5083 405–460 760–860 6061 430–480 810–900 7010 370–440...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002414
EISBN: 978-1-62708-193-1
... Abstract This article reviews the tensile properties and toughness characteristics of discontinuously reinforced aluminum (DRA) composites in terms of particle spacing, particle size, volume fraction, matrix alloy, and matrix microstructure. Both fracture toughness data and impact toughness...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006957
EISBN: 978-1-62708-439-0
...% offset yield strength (YS), and total elongation, for the AlSiCu and Al10SiMg alloys are summarized in Table 1 . For comparison, the table also includes tensile properties for the high-strength aluminum 2618-T61 alloy that is commonly used in aerospace engine applications with exposure up to 300 °C (570...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
... Abstract This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003371
EISBN: 978-1-62708-195-5
... Abstract Metallic matrices are essential constituents for the fabrication of metal-matrix composites (MMCs). This article describes three different classes of aluminum alloys, namely, commercial aluminum alloys, low-density and high-modulus alloys, and high temperature alloys. It presents...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006569
EISBN: 978-1-62708-210-5
... – 2618 10.1007/s11661-999-0301-8 2. Granger D.A. , Sawtell R.R. , and Kersker M.M. , Effect of Beryllium on the Property of A357.0 Castings , AFS Transactions , Vol 92 , 1984 , p 579 – 586 3. Kaiser Aluminum Alloy 2024: Heat Treatable Wrought Aluminum Alloy , Alloy...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
... for aluminum alloys Aluminum alloy Forging temperature range °C °F 1100 315–405 600–760 2014 420–460 785–860 2025 420–450 785–840 2219 425–470 800–880 2618 410–455 770–850 3003 315–405 600–760 4032 415–460 780–860 5083 405–460 760–860 6061 430–480 810...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003123
EISBN: 978-1-62708-199-3
... Abstract More than 450 alloy designations/compositions have been registered by the Aluminum Association (AA) Inc. for aluminum and aluminum alloys. This article contains tables that list the designations and composition limits of wrought unalloyed aluminum and wrought aluminum alloys...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
... Abstract Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003126
EISBN: 978-1-62708-199-3
... Abstract This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003130
EISBN: 978-1-62708-199-3
... Abstract This article discusses the corrosion resistance of aluminum and aluminum alloys in various environments, such as in natural atmospheres, fresh waters, seawater, and soils, and when exposed to chemicals and their solutions and foods. It describes the forms of corrosion of aluminum...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... Type 440 14 Zinc alloys Zn-20Al 19 Aluminum alloys 1100 21 6061 14 Copper alloys C95800 (Ni-Al bronze) 22 MCrAlY 12 , 14 , 18 Composites/cermets WC-Co 14 Cr 3 C 2 -NiCr 8 , 12 Fe-NdFeB 19 Ti-Al 12 , 18 Al-Cu 18...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001064
EISBN: 978-1-62708-162-7
... Abstract This article discusses the applications of high-strength aluminum powder metallurgy (P/M) alloys, detailing the advantages, properties, and the various steps involved in P/M technology, including powder production, powder processing, and degassing and consolidation. Three areas...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003121
EISBN: 978-1-62708-199-3
... Abstract Aluminum and its alloys are used in a broad range of applications. This article discusses the primary and secondary production of aluminum and the classification system for cast and wrought products. It describes some of the more common manufactured forms, including commercial wrought...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003125
EISBN: 978-1-62708-199-3
... Abstract This article discusses the classification, characteristics and temper designations of wrought aluminum alloys. Wrought aluminum products are available as flat-rolled products such as sheets, plates, and foils; rods, bars, and wires; tubular products such as tubes and pipes; extruded...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005887
EISBN: 978-1-62708-167-2
... Abstract This article focuses on the temperature requirements of typical nonferrous metals and their alloys of commercial importance. These include aluminum, copper, magnesium, and titanium. The article describes the thermoelectricity, photoelectricity, and capacity of aluminum alloys...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006520
EISBN: 978-1-62708-207-5
... Abstract This article summarizes a typical solution and aging heat treatments of 2xxx (Al-Cu), 6xxx (Al-Mg-Si), and 7xxx (Al-Zn-Mg) wrought alloys. It discusses the general aging characteristics and the effects of reheating of aluminum alloys. Typical examples of hardness and conductivity...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify...