1-20 of 21 Search Results for

aluminum alloy 2297

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006612
EISBN: 978-1-62708-210-5
... composition aluminum alloy 2124-T851 plate aluminum alloy 2297 aluminum alloy 2297-T87 plate aluminum alloy 2397 mechanical properties thick plate integral structure ...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006594
EISBN: 978-1-62708-210-5
..., these alloys provide good machinability, but less formability than other heat-treatable aluminum alloys. Low-Cu, high-Mg, and high-Li quaternary alloys (e.g., 8090) Medium-Cu, low-Mg, and high-Li quaternary alloys (e.g., 2090) Medium-Cu, low-Mg, medium-Li quaternary alloys (e.g., 2099, 2196, 2297...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006610
EISBN: 978-1-62708-210-5
... of 2198-T8 and 2024-T351 alloys. Reference Reference 1. Runkle J.L.D. , Aerospace Structural Metals Handbook, Nonferrous Alloys , AlWT 2297, March 2004 Alloy 2198 is another Al-Cu-Li alloy ( Table 1 ) that offers improved stiffness with better corrosion resistance, strength...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
...Abstract Abstract The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006493
EISBN: 978-1-62708-207-5
... + Zr … Alloy 2297 Alloys 6069 and 6056 Alloys 7033, 7068, and 7449 Alloys 7040 and 7085 Aluminum-Base Discontinuous Metal-Matrix Composites Aluminum alloys are produced by all of the current forging methods available, including open-die (or hand) forging, closed-die forging...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006626
EISBN: 978-1-62708-210-5
...Typical physical properties of wrought aluminum alloys (engineering units) Table 1 Typical physical properties of wrought aluminum alloys (engineering units) Alloy Temper Density, lb/in. 3 Specific gravity Thermal expansion coefficient, 10 −6 ·1/°F Melting range, °F Thermal...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
...Abstract Abstract This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006543
EISBN: 978-1-62708-210-5
...Nominal compositions for wrought aluminum alloys Table 1 Nominal compositions for wrought aluminum alloys Alloy UNS No. Composition (a) , % Al min (b) , % Notes Si Fe Cu Mn Mg Cr Ni Zn Ti 1050 A91050 … … … … … … … … … 99.50 … 1060 A91060...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006624
EISBN: 978-1-62708-210-5
... limits for wrought aluminum alloys Notes to the nominal compositions and composition limits for wrought aluminum alloys Indicator Definition (a) Both nominal compositions and composition limits are shown. Nominal values are midrange of limits for elements for which a composition range...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003724
EISBN: 978-1-62708-177-1
... are observed with electronic microscopes. An example of dislocations seen at nanoscale magnification is given in Fig. 5 . Fig. 1 Solidification length scale. Source: Ref 1 Fig. 2 Macrostructure of a cast Ti-6Al-4V alloy specimen. Etchant: Keller's reagent Fig. 3 Cast aluminum...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006507
EISBN: 978-1-62708-207-5
...Abstract Abstract The strength of aluminum castings can be improved significantly by heat treatments, which control the size, shape, and distribution of the impurity elements in the casting. This article presents a discussion on the heat treatment of aluminum alloy castings, with a focus...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006264
EISBN: 978-1-62708-169-6
...Typical heat treatments for aluminum alloy sand and permanent mold castings Table 1 Typical heat treatments for aluminum alloy sand and permanent mold castings Alloy Temper Type of casting (a) Solution heat treatment (b) Aging treatment Temperature (c) Time, h Temperature (c...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006311
EISBN: 978-1-62708-179-5
... iron is a function of chemical analysis, temperature, and holding time in the liquid state. X-ray analysis on liquid cast iron demonstrated that, for a Fe-4.1%C-1%Si alloy, the size of undissolved graphite immediately after melting was 36 to 38 nm ( Ref 1 ). It decreased by half after 5 to 6 h holding...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006518
EISBN: 978-1-62708-207-5
.... It summarizes the various product forms in which commonly used wrought aluminum alloys are available. The article also provides design guidelines for aluminum extrusions and discusses various forming methods. aluminum wrought products extrusions forgings forming wrought aluminum alloys ALUMINUM...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006657
EISBN: 978-1-62708-213-6
... spectrum with compositional estimates and scanning electron microscopy micrograph of a cross section of a cerium-base conversion coating over aluminum alloy 2024-T3. Source: Ref 66 . Reprinted with permission from Elsevier Fig. 25 Schematic of sputtering setup with mask to generate a bevel...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
...Abstract Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... destruction causes a low mechanical quality, cracks, porosity, and a very short life of the component. Laser cladding can provide a permanent structural repair and refurbishment on many alloys (e.g., aluminum alloys) that are generally considered unweldable by conventional methods. The success of laser...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001039
EISBN: 978-1-62708-161-0
... other forms of embrittlement, including metal-induced embrittlement, strain-age and aluminum nitride embrittlement, thermal embrittlement, quench cracking, 475 deg C and sigma phase embrittlement (in FeCr alloys), temper embrittlement, and embrittlement caused by neutron irradiation. In addition...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003816
EISBN: 978-1-62708-183-2
... the ionic or electronic conductivity of the film by doping with divalent or trivalent cations should improve corrosion resistance. In practice, alloying additions of aluminum, zinc, tin, iron, and nickel are used to dope the corrosion product films, and they generally reduce corrosion rates significantly...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002397
EISBN: 978-1-62708-193-1
...Abstract Abstract This article summarizes the metallurgy of carbon and alloy steels, followed by discussions on their major mechanical properties, namely, static fracture toughness, dynamic fracture toughness, fatigue or sustained-load crack growth rates, and fatigue or sustained-load...