1-14 of 14

Search Results for aluminothermic reaction

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001373
EISBN: 978-1-62708-173-3
... Abstract Thermite welding (TW) is a fusion welding process in which two metals become bonded after being heated by superheated metal that has experienced an aluminothermic reaction. This article describes the thermite welding principles by presenting equations of the aluminothermic reaction...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
..., aluminum, copper, brass, and titanium. Thermite Welding THERMITE WELDING is a process that produces coalescence of metals by heating them with superheated liquid metal from an aluminothermic reaction between a metal oxide and aluminum with or without the application of pressure. Filler metal...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... The second way in which chemical reactions can be used to produce heat for welding or brazing is best known as thermit welding but which actually includes a wide variety of so-called aluminothermic reactions and, more recently, a variety of similar highly exothermic chemical reactions known as combustion...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006052
EISBN: 978-1-62708-175-7
... and chemical composition are influenced by several factors including temperature, carbon content, dopant levels, reaction time ( Ref 4 , 5 ), starting tungsten grain/particle size, impurity type and amounts, powder bed thickness, and carburizing environment. Fig. 2 Tungsten carburization model...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006121
EISBN: 978-1-62708-175-7
... Tungsten 25 25 Vanadium 10 5 Zirconium 10 5 Niobium Powder Production Virtually all niobium metal is extracted and purified by aluminothermic reduction of the oxide. During the exothermic reaction, oxide impurities slag from the molten niobium. The metal is further purified...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001110
EISBN: 978-1-62708-162-7
... pentoxide is mixed with iron powder and reduced to ferrocolumbium, by the aluminothermic reaction. The specialty steel industry is the largest consumer of the material in this form (see the section “Niobium” in the article “Properties of Pure Metals” in this Volume). NbCl 5 is then produced...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001079
EISBN: 978-1-62708-162-7
... by sintering and/or melting. The process for niobium differs only in that the metal is most commonly reduced by aluminothermic reduction of oxide. In this process, oxide impurities slag from the molten niobium. For tantalum and niobium, electron beam (EB) melting is widely used for further purification...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006065
EISBN: 978-1-62708-175-7
... is in North America where annual shipments are about 40,000 tons ( Ref 2 ). Atomized aluminum powders are used in a variety of applications that include pyrotechnics, explosives, rocket fuel, thermite welding, aluminothermic reduction, chemical processes (as catalyst or reagent), additives for lightweight...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001117
EISBN: 978-1-62708-162-7
... 9.01333 3 × 10 −19 P, (2α) 12 B … 0.019 β − 13 B … 0.035 β − Chemical Properties Effects of Specific Corroding Agents Reactivities and conditions for reaction of boron with several materials are: Fluorine, instantaneous at room temperature Chlorine, above 500 °C...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003789
EISBN: 978-1-62708-177-1
..., and palladium: by chemical precipitation Tungsten and molybdenum: by reduction of oxides Metal carbides: by carburization, Menstruum process, and exothermic thermite reactions Tantalum: by reduction of potassium tantalum fluoride and a sequence of electron beam melting, hydriding, comminution...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.9781627081627
EISBN: 978-1-62708-162-7