1-20 of 87 Search Results for

alpha-beta alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... Abstract The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides a...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
... Abstract This article provides a detailed discussion on heat treatment of titanium alloys such as alpha alloys, alpha-beta alloys, and beta and near-beta alloys. Common processes include stress-relief, annealing, solution treating, aging, quenching, and age hardening. It provides information on...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys, and...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006253
EISBN: 978-1-62708-169-6
... Abstract This article introduces the different types, distinctions, and grades of commercially pure titanium and titanium alloys. It describes three types of alloying elements: alpha stabilizers, beta stabilizers, and neutral additions. The article discusses the basic categories of titanium...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
..., and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005409
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006280
EISBN: 978-1-62708-169-6
... Abstract Brasses are copper alloys with zinc as the principal alloying element. This article provides information on the chemical compositions and mechanical properties of the three types of brasses: alpha, duplex and beta. It briefly discusses the Unified Numbering System designations...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... transus temperature. Alpha stabilizers raise the transformation temperature. Alpha stabilizers include aluminum, oxygen, and lanthanum. Nitrogen and carbon are also α stabilizers, but these elements usually are not added intentionally in alloy formulations. Beta stabilizers are elements that lower the...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... in two-phase materials as well as their more attractive properties ( Ref 38 ), near-gamma alloys, which contain a small amount of second-phase alpha-two (Ti 3 Al) or ordered beta, are the most common materials in this class. The near-gamma alloys typically contain between 45 and 48 at.% Al as well...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... intentionally in alloy formulation. Beta stabilizers, such as manganese, chromium, iron, molybdenum, vanadium, and niobium, lower the α-to-β transformation temperature and, depending on the amount added, may result in the retention of some β phase at room temperature. Depending on the alloying with alpha and...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006256
EISBN: 978-1-62708-169-6
... produce a smooth surface after subsequent working. Beta treatment is also used as a heat treatment for DU worked in the high-alpha-temperature range. Beta treatment consists of heating the DU into the beta range, holding for a suitable time, and cooling at a rapid rate. A common temperature range is 720...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003184
EISBN: 978-1-62708-199-3
... temperature establishes the maximum temperature to which an alloy can be heated without developing a new microstructure that may result in reduced final properties. Alpha-beta alloys can be strengthened by heat treatments that cause some of the beta phase to transform into alpha, finely dispersed in the beta...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... and pickling the sheet before grinding prolongs belt life. Following the initial grit, each successive grit must remove enough stock to eliminate the scratches caused by the previous grit. The alpha alloys, such as Ti-5Al-2.5Sn, are less sensitive to surface condition than the alpha-beta alloys, such...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003143
EISBN: 978-1-62708-199-3
... Typical fracture-toughness values at high-strength titanium alloys Alloy Alpha morphology Yield strength Fracture toughness ( K Ic ) MPa ksi MPa m ksi in. Ti-6Al-4V Equiaxed 910 130 44–66 40–60 Transformed 875 125 88–110 80–100 Ti-6Al-6V-2Sn Equiaxed...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003822
EISBN: 978-1-62708-183-2
... these alloys. These range from no- or low-alloy-content single-phase alpha (α) or near-α (relatively small amount of beta, β, phase) titanium alloys to more highly alloyed, higher-strength α-β and metastable β alloys. The α phase consists of a hexagonal close-packed crystal structure, whereas the β...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003997
EISBN: 978-1-62708-185-6
... hand, more than 0.10% Pb in a Cu-30%Zn alpha brass can lead to catastrophic high-temperature cracking. As a rule of thumb, leaded brasses show better forgeability if their beta contents are greater than 50%. Forging temperatures, which vary with alloy composition, range between the recrystallization...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003204
EISBN: 978-1-62708-199-3
... completed, it is important that aluminum bronzes be cooled rapidly, using water quenching, spray cooling, or fan cooling. Slow cooling from 565 to 275 °C (1050 to 530 °F) can cause the residual tempered martensitic beta phase to decompose, forming the embrittling alpha-gamma eutectoid. The presence of...