1-20 of 249 Search Results for

alpha-beta alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2016
Fig. 16 Yield and creep strengths of alpha alloy Ti-5Al-2.5Sn and alpha-beta alloy Ti-8Mn for a range of temperatures. Source: Ref 1 More
Image
Published: 01 December 2004
Fig. 22 Ti-6Al-6V-2Sn alpha-beta alloy forging, solution treated, quenched, and aged. Hand forging at 925 °C (1700 °F), solution treated for 2 h at 870 °C (1600 °F), water quenched, aged 4 h at 595 °C (1100 °F), and air cooled. (a) “Primary” alpha grains (light) in a matrix of transformed beta More
Image
Published: 01 June 2016
Fig. 21 Microstructure of forge titanium alpha-beta alloy (Ti-6Al-2Sn-4Zr-6Mo) with varying amounts of primary alpha and secondary acicular alpha in matrix of beta that transformed by aging (dark). (a) Solution treated 2 h at 870 °C (1600 °F), water quenched, aged 8 h at 595 °C (1100 °F More
Image
Published: 01 June 2016
Fig. 22 Fatigue crack nucleation sites in Ti-6Al-4V alpha-beta alloy. (a) Fully lamellar microstructure. (b) Fully equiaxed microstructure. (c) Duplex microstructure More
Image
Published: 01 June 2016
Fig. 33 Effect of cooling rate on the microstructure of an alpha-beta alloy (Ti-6Al-4V). (a) α′ + β; prior beta grain boundaries. (b) Primary α and α′ + β. (c) Primary α and α′ + β. (d) Primary α and metastable β. (e) Acicular α + β; prior beta grain boundaries. (f) Primary α and acicular α More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... Abstract This article focuses on the physical metallurgy and weldability of four families of titanium-base alloys, namely, near-alpha alloy, alpha-beta alloy, near-beta, or metastable-beta alloy, and titanium based intermetallics that include alpha-2, gamma, and orthorhombic systems...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... Abstract The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003779
EISBN: 978-1-62708-177-1
... Abstract This article describes the fundamentals of titanium metallographic sample preparation. Representative micrographs are presented for each class of titanium alloys, including unalloyed titanium, alpha alloys, alpha-beta alloys, and beta titanium alloys. The article provides information...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001415
EISBN: 978-1-62708-173-3
... Abstract This article emphasizes the physical metallurgy of titanium and titanium alloys along with their microstructural response to fusion welding condition. The titanium alloys are classified into unalloyed or commercially pure titanium, alpha and near-alpha alloys, alpha-beta alloys...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001081
EISBN: 978-1-62708-162-7
... and chemical properties, including chemical composition, corrosion resistance, and chemical reactivity. The article discusses the effects of alloying elements in titanium alloys, and describes the classes of titanium alloys, namely, alpha alloys, alpha-beta alloys, and beta alloys. It also describes...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002409
EISBN: 978-1-62708-193-1
... in the article include alpha-beta alloys, Ti-6AI-4V; alpha alloys, Ti-8Al -1Mo-IV, Ti-5AI-2.5Sn, Ti-6242S; and beta alloys, solute-lean beta alloys and solute-rich beta alloys. alpha alloys alpha-beta alloys beta alloys fatigue fracture modes fatigue life fracture toughness mechanical strength...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
... Abstract This article provides a detailed discussion on heat treatment of titanium alloys such as alpha alloys, alpha-beta alloys, and beta and near-beta alloys. Common processes include stress-relief, annealing, solution treating, aging, quenching, and age hardening. It provides information...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
... Abstract This article provides a discussion on filler metal selection, brazing procedures, and brazing equipment for brazing refractory metals. These include molybdenum, tungsten, niobium, and tantalum, and reactive metals. Commercially pure and alpha titanium alloys, alpha-beta alloys...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0009239
EISBN: 978-1-62708-173-3
... Abstract This article discusses the effects of brazing temperature and thermal treatment on structure and mechanical behavior of different classes of titanium base metals such as commercially pure (CP) titanium, alpha or near-alpha alloys, alpha-beta alloys, and beta alloys. The classification...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
... Abstract This article describes different types of titanium alloys, including alloy Ti-6Al-4V, alpha and near-alpha alloys, and alpha-beta alloys. It explains the formability of titanium alloys with an emphasis on the Bauschinger effect. The article provides information on the tool materials...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006253
EISBN: 978-1-62708-169-6
... Abstract This article introduces the different types, distinctions, and grades of commercially pure titanium and titanium alloys. It describes three types of alloying elements: alpha stabilizers, beta stabilizers, and neutral additions. The article discusses the basic categories of titanium...
Image
Published: 01 January 1990
Fig. 16 Effects of forging and heat treating temperatures on properties of titanium alloys. (a) Phase diagram of alpha and beta contents with a base composition of titanium + 6 wt% Al. (b) Generalized effect of processing temperature on beta grain size and room-temperature mechanical More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... temperature is influenced by alloying or impurities, which may either raise or lower the transformation temperature. Some alloying elements, such as zirconium and tin, have essentially no effect on the beta transus temperature. Alpha stabilizers raise the transformation temperature. Alpha stabilizers include...
Image
Published: 01 June 2016
Fig. 9 Correlation between beta transus and stress at 35% of room-temperature yield strength to produce creep deformation of 0.2% in 100 h for various titanium alloys. A linear relation is more evident for alpha-beta alloys. Source: Ref 3 More