1-20 of 186 Search Results for

alpha-beta alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001415
EISBN: 978-1-62708-173-3
... Abstract This article emphasizes the physical metallurgy of titanium and titanium alloys along with their microstructural response to fusion welding condition. The titanium alloys are classified into unalloyed or commercially pure titanium, alpha and near-alpha alloys, alpha-beta alloys...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... 0.05 0.15 5.8 4 3.5 0.5 0.7 Nb, 0.35 Si ELI, extra-low interstitial Relative advantages of equiaxed and acicular morphologies in near-alpha and alpha-beta alloys Table 4 Relative advantages of equiaxed and acicular morphologies in near-alpha and alpha-beta alloys Equiaxed...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
...Abstract Abstract This article provides a detailed discussion on heat treatment of titanium alloys such as alpha alloys, alpha-beta alloys, and beta and near-beta alloys. Common processes include stress-relief, annealing, solution treating, aging, quenching, and age hardening. It provides...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... Table 1 Advanced titanium alloy families Conventional alloys Near-alpha: Ti-1100; IMI-834 Alpha-beta: Corona 5 Near-beta: Ti-10V-2Fe-3Al Metastable-beta: Beta 215; Beta C Intermetallic alloys Alpha-2: Ti24Al-11Nb; Ti25Al-10Nb-3V-1Mo Gamma: Ti-Al-Nb-Cr Orthorhombic: Ti-Al-Nb...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002409
EISBN: 978-1-62708-193-1
... in the article include alpha-beta alloys, Ti-6AI-4V; alpha alloys, Ti-8Al -1Mo-IV, Ti-5AI-2.5Sn, Ti-6242S; and beta alloys, solute-lean beta alloys and solute-rich beta alloys. alpha alloys alpha-beta alloys beta alloys fatigue fracture modes fatigue life fracture toughness mechanical strength...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... and describes the secondary phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0009239
EISBN: 978-1-62708-173-3
... Abstract This article discusses the effects of brazing temperature and thermal treatment on structure and mechanical behavior of different classes of titanium base metals such as commercially pure (CP) titanium, alpha or near-alpha alloys, alpha-beta alloys, and beta alloys. The classification...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001081
EISBN: 978-1-62708-162-7
... with its typical heat treatment. (f) Semicommercial alloy with a UNS designation of R54560 Table 5(b) Compositions of various alpha-beta titanium alloys Product specification(s) Impurity limits, wt% max Alloying elements, wt% (a) N C H Fe O Max others, each or total Al Sn...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003779
EISBN: 978-1-62708-177-1
... Abstract This article describes the fundamentals of titanium metallographic sample preparation. Representative micrographs are presented for each class of titanium alloys, including unalloyed titanium, alpha alloys, alpha-beta alloys, and beta titanium alloys. The article provides information...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
... Abstract This article describes different types of titanium alloys, including alloy Ti-6Al-4V, alpha and near-alpha alloys, and alpha-beta alloys. It explains the formability of titanium alloys with an emphasis on the Bauschinger effect. The article provides information on the tool materials...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
... Abstract This article provides a discussion on filler metal selection, brazing procedures, and brazing equipment for brazing refractory metals. These include molybdenum, tungsten, niobium, and tantalum, and reactive metals. Commercially pure and alpha titanium alloys, alpha-beta alloys...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006253
EISBN: 978-1-62708-169-6
... turbine compressors Ti-5Al-6Sn-2Zr-1Mo-0.25Si None Ti-5621S Ti-5621S is a semicommercial alloy developed by RMI Titanium Company in the 1960s to extend the use of titanium applications to 540 °C (1000 °F). Used for jet engine components Ti-5Al-4V-0.6Mo-0.4Fe … Timetal 54M Alpha-beta alloy...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005409
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... for the completion into β on heating. The beta transus temperature is influenced by alloying or impurities, which may either raise or lower the transformation temperature. Some alloying elements, such as zirconium and tin, have essentially no effect on the beta transus temperature. Alpha stabilizers raise...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001440
EISBN: 978-1-62708-173-3
... mm (0.5 in.) thick. The following fusion-welding processes are used for joining titanium and titanium alloys: Unalloyed titanium and all alpha titanium alloys are weldable. Although the alpha-beta alloy Ti-6Al-4V and other weakly beta-stabilized alloys are also weldable, strongly beta...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002189
EISBN: 978-1-62708-188-7
... (215) 0.20 (0.008) C-2 7.5 (0.300) 18 (60) 0.38 (0.015) T15, M42 (b) 43 (140) 49 (160) 0.25 (0.010) C-2 16 (0.625) … … … 21 (70) 24 (80) 0.38 (0.015) C-2 Alpha-beta alloys: Ti-6Al-4V, Ti-6Al-4V-ELI, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-2Mo-0.25Si, Ti-6Al-2Sn-4Zr-6Mo 310–350...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005337
EISBN: 978-1-62708-187-0
.... A , Vol 9A , 1978 , p 1273 – 1279 28. Yoder G.R. and Eylon D. , On the Effect of Colony Size on Fatigue Crack Growth in Widmanstätten Structure Alpha + Beta Alloys , Metall. Trans. A , Vol 10A , 1979 , p 1808 – 1810 29. Eylon D. and Bania P.J. , Fatigue...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
...Abstract Abstract This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium...