Skip Nav Destination
Close Modal
By
ASM Committee on Steel Sheet and Strip, David Hudok, J.K. Mahaney, Jr., S.A. Kish, A.P. Cantwell ...
Search Results for
alloy steel classifications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 684
Search Results for alloy steel classifications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
... Abstract This article provides an overview of the different classification and designation systems of wrought carbon steel and alloy steel product forms with total alloying element contents not exceeding 5″. It lists the quality descriptors, chemical compositions, cast or heat composition...
Abstract
This article provides an overview of the different classification and designation systems of wrought carbon steel and alloy steel product forms with total alloying element contents not exceeding 5″. It lists the quality descriptors, chemical compositions, cast or heat composition ranges, and product analysis tolerances of carbon and alloy steels. The major designation systems discussed include the Society of Automotive Engineers (SAE)-American Iron and Steel Institute (AISI) designations, Unified Numbering System (UNS) designations, American Society for Testing and Materials (ASTM) designations, Aerospace Material Specification (AMS), and other international designations and specifications.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001009
EISBN: 978-1-62708-161-0
... Abstract This article addresses classifications and designations for carbon steels and low-alloy steels, particularly high-strength low-alloy (HSLA) steels, based on chemical composition, manufacturing methods, finishing method, product form, deoxidation practice, microstructure, required...
Abstract
This article addresses classifications and designations for carbon steels and low-alloy steels, particularly high-strength low-alloy (HSLA) steels, based on chemical composition, manufacturing methods, finishing method, product form, deoxidation practice, microstructure, required strength level, heat treatment and quality descriptors. It describes the effects of alloying elements on the properties and characteristics of steels. The article provides extensive tabular data pertaining to domestic and international designations of steels.
Image
Published: 01 December 1998
Fig. 8 Classification system for low-alloy steel electrodes and fluxes used in SAW applications
More
Image
Published: 01 January 1993
Fig. 4 Classification system for low-alloy steel electrodes and fluxes used in SAW applications
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001359
EISBN: 978-1-62708-173-3
... in Ref 13 . The classification system for flux-electrode combinations of low-alloy steel is shown in Fig. 4 . Table 3 shows the AWS electrode classification as determined by the composition of the solid electrode composition, while Table 4 is the flux-electrode classification requirement...
Abstract
Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications of SAW. The article discusses flux classification relative to production method, relative to effect on alloy content of weld deposit, and relative to basicity index. It describes the procedural variations and the effect of weld current, weld voltage, electrical stickout, travel speed, and flux layer depth on weld bead characteristics. The article concludes with information on weld defects, such as lack of fusion, slag entrapment, solidification cracking, hydrogen cracking, or porosity.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
...-Pass Low-Alloy Weld Metal The classification of low-alloy steel welding electrodes and fluxes is detailed in “Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding,” ANSI/AWS A5.23 ( Ref 3 ). The classification of solid electrodes is based on the chemical composition...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... process are reviewed. The article illustrates the manufacturing process for the electrodes used in FCAW and outlines the classification of carbon and low-alloy steel, stainless steel, and nickel-base electrodes. carbon steels electrodes flux cored arc welding low-alloy steels manufacturing...
Abstract
This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW process are reviewed. The article illustrates the manufacturing process for the electrodes used in FCAW and outlines the classification of carbon and low-alloy steel, stainless steel, and nickel-base electrodes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... 2 C-grade classification of cemented carbides C-grade Application category Machining of cast iron, nonferrous, and nonmetallic materials C-1 Roughing C-2 General-purpose machining C-3 Finishing C-4 Precision finishing Machining of carbon and alloy steels C-5...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... the microstructure and properties. Therefore, both heat input and thickness should be considered. Classification of Steels The carbon and low-alloy steels discussed in this Section cover a wide variety of compositions and properties. Steels are most often classified according to their carbon and/or alloy...
Abstract
This article presents in-depth metallurgical information about the response of carbon and low-alloy steels to welding conditions and micro-structural evolution in the weld heat-affected zone. It discusses the fabrication weldability and service weldability of carbon and low-alloy steels. The article describes six general classes of the metal: low-carbon steels, high-strength low-alloy steels, quenched-and-tempered steels, heat-treatable low-alloy steels, thermal-mechanical-controlled processing steels, and chromium-molybdenum steels. It concludes with an illustration of steels' susceptibility to hydrogen-assisted cold cracking relative to carbon content and carbon equivalent.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005983
EISBN: 978-1-62708-166-5
...) Medium & High Carbon Steels Anneal (no Decarb) X X X … 1200–1450 (649–788) Endogas Alloy Steels, Med. & High Carbon Anneal (no Decarb) X X X … 1300–1600 (704–871) Endogas High Speed Tool Steels including Molybdenum High Steels Anneal (no Decarb) X X X … 1400–1600 (760...
Abstract
This article describes the effects of furnace atmospheric elements on steels. These elements are air, water vapor, molecular nitrogen, carbon dioxide, and carbon monoxide. The article provides useful information on six groups of commercially important prepared atmospheres classified by the American Gas Association on the basis of method of preparation or on the original constituents employed. These groups are designated and defined as follows: Class 100, exothermic base; Class 200, prepared nitrogen base; Class 300, endothermic base; Class 400, charcoal base; Class 500, exothermic-endothermic base; and Class 600, ammonia base. These are subclassified and numerically designated to indicate variations in the method by which they are prepared. The article also contains a table that lists significant furnace atmospheres and their typical applications.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001020
EISBN: 978-1-62708-161-0
... Abstract This article discusses tubular products made from wrought carbon or alloy constructional steels, particularly pipe, specialty tubing, and oil country tubular goods. The article covers product classifications, available specifications, chemical compositions, sizes, and other dimensional...
Abstract
This article discusses tubular products made from wrought carbon or alloy constructional steels, particularly pipe, specialty tubing, and oil country tubular goods. The article covers product classifications, available specifications, chemical compositions, sizes, and other dimensional attributes. Some of the common types of pipe are standard pipe, conduit pipe, piling pipe, pipe for nipples, transmission or line pipe, water main and water well pipe, and pressure pipe. Pipe in suitable sizes and most products classified as tubing, both seamless and welded, may be cold finished. Pressure tubes, a separate classification, include double-wall brazed tubing, structural tubing, welded mechanical tubing, continuous-welded cold-finished mechanical tubing, and seamless mechanical tubing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003106
EISBN: 978-1-62708-199-3
... Abstract Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. This article provides a description of iron-iron carbide-silicon system; and discusses the classification, composition, and characteristics of cast irons, such as gray, ductile, malleable...
Abstract
Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. This article provides a description of iron-iron carbide-silicon system; and discusses the classification, composition, and characteristics of cast irons, such as gray, ductile, malleable, compacted graphite, and white cast iron. A table shows the correspondence between commercial and microstructural classification, as well as final processing stage in obtaining common cast irons.
Image
Published: 01 August 2013
Fig. 53 Graphical illustration of Grossmann hardenability value classification of quenching media. Note the assessment of the potential suitability of a quenchant for use with low-hardenability carbon steels and high-hardenability alloy steels, in addition to thick or thin section size. Source
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003730
EISBN: 978-1-62708-177-1
... Microstructures Morphology, that is, the size, shape, and distribution of the phases present in the microstructure, is one way of characterizing the microstructure. Although some industrial alloys make use of single-phase structures—for example, austenitic stainless steel or cartridge brass—most alloys...
Abstract
This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating the classification of transformations by growth processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003096
EISBN: 978-1-62708-199-3
... Abstract This article discusses the classifications, specifications, applications and methods for producing welded and seamless steel tubular products, including pipes and tubes. Common types of pipes include standard pipe, conduit pipe, piling pipe, pipe for nipples, transmission or line pipe...
Abstract
This article discusses the classifications, specifications, applications and methods for producing welded and seamless steel tubular products, including pipes and tubes. Common types of pipes include standard pipe, conduit pipe, piling pipe, pipe for nipples, transmission or line pipe, water main pipe, oil country tubular goods, water well pipe, and pressure pipe. Pipes in suitable sizes, and most of the products classified as tubing, both seamless and welded, may be cold finished. Pressure tubes are given a separate classification by both the American Society for Testing and Materials (ASTM) and producers. The term tube covers three groups, including pressure tubes, structural tubing, and mechanical tubing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... and heat treatment on fracture toughness of steels. carbon steels classification of wear effect of alloying elements fatigue failure forms of embrittlement fracture toughness low-alloy steels notch toughness wear resistance Wear Resistance of Steels WEAR of metals occurs...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001093
EISBN: 978-1-62708-162-7
... they are affected by impurities, alloying additions, heat treatment, residual stress, and grain size. It also describes classification and testing methods for magnetically soft materials such as high-purity iron, low-carbon steels, silicon steels, iron-aluminum alloys, nickel-iron alloys, iron-cobalt alloys...
Abstract
Magnetically soft materials are characterized by their low coercivity, an essential requirement for irons and steels selected for any application involving electromagnetic induction cycling. This article provides information on ferromagnetic material properties and how they are affected by impurities, alloying additions, heat treatment, residual stress, and grain size. It also describes classification and testing methods for magnetically soft materials such as high-purity iron, low-carbon steels, silicon steels, iron-aluminum alloys, nickel-iron alloys, iron-cobalt alloys, ferrites, and stainless steels. The article also addresses corrosion resistance and provides insights on the selection of alloys for power generation applications, including motors, generators, and transformers. A short note on the design and fabrication of magnetic cores is also included.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001011
EISBN: 978-1-62708-161-0
... Abstract This article addresses classifications and designations for carbon and low-alloy steel sheet and strip product forms based on composition, quality descriptors, mechanical properties, and other factors. Carbon steel sheet and strip are available as hot-rolled and as cold-rolled products...
Abstract
This article addresses classifications and designations for carbon and low-alloy steel sheet and strip product forms based on composition, quality descriptors, mechanical properties, and other factors. Carbon steel sheet and strip are available as hot-rolled and as cold-rolled products. Low-alloy steel sheet and strip are used primarily for applications that require the mechanical properties normally obtained by heat treatment. The descriptors of quality used for hot-rolled plain carbon steel sheet and strip and cold-rolled plain carbon steel sheet include structural quality, commercial quality, drawing quality, and drawing quality, special killed. The surface texture of low-carbon cold-rolled steel sheet and strip can be varied between rather wide limits. The modified low-carbon steel grades discussed in the article are designed to provide sheet and strip products having increased strength, formability, and/or corrosion resistance. The article also summarizes the key operations involved in the three alternative direct casting processes: thin slab, thin strip, and spray casting.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... equivalent to the classification of hydrogen embrittlement in steels that is defined in Properties and Selection: Irons, Steels, and High-Performance Alloys , Volume 1, ASM Handbook , as follows ( Ref 5 ): Hydrogen environmental embrittlement Hydrogen stress cracking Loss in tensile ductility...
Abstract
This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types of hydrogen embrittlement discussed include internal reversible hydrogen embrittlement, hydrogen environment embrittlement, and hydrogen reaction embrittlement. The article describes preservice and early-service fractures of commodity-grade steel components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also reviewed.
1