1-20 of 2563 Search Results for

alloy designation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001058
EISBN: 978-1-62708-162-7
... Abstract A four-digit numerical designation system is used to identify wrought aluminum and aluminum alloys. In addition to providing a detailed account of the temper designation system for aluminum and aluminum alloys, this article describes wrought and cast aluminum and aluminum alloy...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003122
EISBN: 978-1-62708-199-3
... Abstract This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001009
EISBN: 978-1-62708-161-0
... Abstract This article addresses classifications and designations for carbon steels and low-alloy steels, particularly high-strength low-alloy (HSLA) steels, based on chemical composition, manufacturing methods, finishing method, product form, deoxidation practice, microstructure, required...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002351
EISBN: 978-1-62708-193-1
.... alloy design alloy steels aluminum alloys carbon fatigue fatigue crack propagation fracture fracture toughness microstructural factors titanium alloys FRACTURE MECHANICS is a very powerful tool for predicting the loads and crack lengths at which fracture can occur. Broken down to its...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006970
EISBN: 978-1-62708-439-0
... on the feasibility of using flagship alloys to manufacture complex components. This article presents one example of an aluminum alloy design tailored for laser powder-bed fusion AM. It discusses the integrated computational materials engineering design approach. The article also presents the design for high-strength...
Image
Published: 01 December 1998
Fig. 4 Effect of alloy, design, and directionality on the axial fatigue strength of aluminum alloy forgings. Data apply to parts A and B, as shown. Sheet-type fatigue specimens, 3.2 mm (0.125 in.) thick and 6.4 mm (0.250 in.) wide, were cut both parallel and transverse to the forging flow More
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006973
EISBN: 978-1-62708-439-0
... systems until their failure mechanisms are studied when processed through AM processes. Aluminum Alloys Aluminum alloys are typically classified into one of two categories: wrought or casting alloys. Each has its own designation system to further categorize its alloys. Wrought Alloys Wrought...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003123
EISBN: 978-1-62708-199-3
... Abstract More than 450 alloy designations/compositions have been registered by the Aluminum Association (AA) Inc. for aluminum and aluminum alloys. This article contains tables that list the designations and composition limits of wrought unalloyed aluminum and wrought aluminum alloys...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
... Abstract This article provides an overview of the different classification and designation systems of wrought carbon steel and alloy steel product forms with total alloying element contents not exceeding 5″. It lists the quality descriptors, chemical compositions, cast or heat composition...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006622
EISBN: 978-1-62708-210-5
... Abstract This article lists temper designations and their definitions for aluminum alloys along with their product forms used in the United States (ANSI H35.1), Europe (EN 515), and internationally (ISO 2107). aluminum alloys temper designations Temper designations and definitions...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006332
EISBN: 978-1-62708-179-5
... composition and initial melt condition. Besides the basic alloy properties, the effective castability of high-alloy irons can be significantly improved through casting and casting system design. The article describes the product design and processing factors of high-alloy graphitic irons and high-alloy white...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006578
EISBN: 978-1-62708-210-5
... Abstract The 391-type hypereutectic aluminum-silicon alloys are hypereutectic alloys designed for applications where excellent wear resistance is needed. They are similar to the 390 family of alloys, except for a low copper content to improve castability and corrosion resistance. This datasheet...
Image
Published: 01 December 2008
Fig. 2 Suggested design details for aluminum alloys. Recommended dimensions are averages, and the use of either larger or smaller numerical factors may result in more difficult casting or defects. Source Van Hoen, Vol. III. More
Image
Published: 01 December 2008
Fig. 10 Design parameters to aid stress reduction in magnesium alloy castings More
Image
Published: 01 January 2005
Fig. 3 Designs and processes for aluminum alloy cylinder forgings. Dimensions given in inches More
Image
Published: 01 January 2005
Fig. 10 Aluminum alloy forgings that incorporate design draft. (a) Pylon bulkhead forging. (b) Stabilizer support forging. Dimensions given in inches. More
Image
Published: 01 January 2005
Fig. 11 Two designs of an aluminum alloy cargo door actuator cylinder forging, incorporating natural draft over exterior surfaces. (a) Conventional solid forging. (b) Seamless cored forging. Dimensions given in inches. More