Skip Nav Destination
Close Modal
Search Results for
alloy 201.0
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 33 Search Results for
alloy 201.0
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... ALUMINUM ALLOYS 201.0 and A201.0 are structural casting alloys available as sand, permanent mold and investment castings. They are used in structural casting members, applications requiring high tensile and yield strengths with moderate elongation, and where high strength and energy-absorption capacity...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61. alloy 201.0 alloy 354.0-T61 alloy A356.0-T61 alloy C355.0-T61 aluminum...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006555
EISBN: 978-1-62708-210-5
... alloys are in their optimum temper Table 6 Minimum room-temperature tensile properties of A206.0 and four other high-strength aluminum casting alloys, all alloys are in their optimum temper Property A 206.0 T7 A 201.0 T7 224.0 T62 A357.0 T61 A356.0 T61 Tensile strength MPa (ksi) 380...
Abstract
The 206.0, A206.0, and B206.0 alloys (aluminum alloys 2xxx) are structural castings in the heat-treated temper for automotive and aerospace applications where high tensile and yield strengths with moderate elongations are needed. This datasheet provides information on key alloy metallurgy and fabrication characteristics of these 2xxx series alloys, as well as the effects of processing on their typical physical and mechanical properties.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
... for aluminum alloy sand and permanent mold castings Except where ranges are given, listed temperatures are ±6 °C (±10 °F). Alloy Temper Type of casting (a) Solution heat treatment (b) Aging treatment Temperature Time, h Temperature Time, h °C °F °C °F 201.0 T6 S 510–515 950–960...
Abstract
This article focuses on the aging characteristics of solution and precipitation heat treated aluminum alloy systems and their corresponding types. It includes information on aluminum-copper systems, aluminum-copper-magnesium systems, aluminum-magnesium-silicon systems, aluminum-zinc-magnesium systems, aluminum-zinc-magnesium-copper systems, and aluminum-lithium alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001062
EISBN: 978-1-62708-162-7
..., fabrication characteristics, and mass characteristics. cast aluminum alloys chemical compositions electrical properties fabrication characteristics mechanical properties physical properties thermal properties 201.0<break />4.6Cu-0.7Ag-0.35Mn-0.35Mg-0.25Ti Commercial Names Trade Name...
Abstract
This article is a compilation of property data for standard grades of cast aluminum alloys. Data are provided for mechanical, thermal, and electrical properties. The listing for each alloy includes commercial names, chemical compositions, applications, relevant specifications, fabrication characteristics, and mass characteristics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... to 0.35% Mg, with highly restrictive impurity (iron and silicon) limits, and in some cases also contain 0.25 to 0.35% Mn or Cr and (in alloys 201.0, A201.0, and 202.0) 0.7% Ag. Good casting design and foundry techniques must be employed to realize full mechanical-property capabilities and consistently...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
...) 24.5 (13.6) Premium casting alloys (high strength and toughness alloys 201.0 T6(S) 2.80 2796 0.101 570–650 1000–1200 27–32 0.29 19.3 (10.7) 24.7 (13.7) T7(P) 2.80 2796 0.101 570–650 1000–1200 32–34 0.29 19.3 (10.7) 24.7 (13.7) 206.0 T4(S) 2.8 2796 0.101 570–650...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Nominal composition of aluminum alloy castings Alloy Nominal composition with balance aluminum (a) , wt% Si Fe Cu Mn Mg Cr Ni Zn Ti Sn 100.1 … 0.7 … … … … … … … … 150.1 … … … … … … … … … … 170.1 … … … … … … … … … … 201.0 (b...
Abstract
The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1). This article provides a detailed discussion on the alloy and temper designation system for aluminum and its alloys. The Aluminum Association alloy designations are grouped as wrought and cast alloys. Lengthy tables provide information on alloying elements in wrought aluminum and aluminum alloys; nominal composition of aluminum alloy castings; typical mechanical properties of wrought and cast aluminum alloys in various temper conditions; and cross references to former and current cast aluminum alloy designations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... Abstract Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify...
Abstract
Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify alloying elements, compositional modifications, purity levels, and product types. It also uses a multicharacter code to convey process-related details on heat treating, hardening, cooling, cold working, and other stabilization treatments. The article includes several large tables that provide extensive information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... Abstract This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based...
Abstract
This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based on the stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on foundry alloys for specific casting applications. The article concludes with a discussion on the heat treatment practices and properties of aluminum casting alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006556
EISBN: 978-1-62708-210-5
... impact, no notch, smooth, ft-lb 9 7 (a) Quenched in hot water. (b) Air cooled General characteristics of alloy 208.0 are similar to the other Al-Cu casting alloys, but a higher silicon content improves castability: Characteristic 201.0 206.0 208.0 Resistance to hot...
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
... Abstract This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article...
Abstract
This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article discusses distortion and dimensional variation and machining problems during the machining of high-silicon aluminum alloy. It also provides information on tool design and material, speed and feed, and the cutting fluid used for various machining processes, namely, turning, boring, planing and shaping, broaching, reaming, tapping, milling, sawing, grinding, honing, and lapping. The article concludes with a discussion on drilling operations in automatic bar and chucking machines and drill presses.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006625
EISBN: 978-1-62708-210-5
... Abstract This article contains a table that lists the values of nominal compositions and composition limits of aluminum alloy castings. alloy nominal composition aluminum alloy castings The compositions in this table are based on industry handbooks, notably The Aluminum...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
.... Alloy Resistance to hot cracking (a) Pressure tightness Fluidity (b) Shrinkage tendency Corrosion resistance (c) Machinability (d) Weldability (e) Sand casting alloys 201.0 4 3 3 4 4 1 2 208.0 2 2 2 2 4 3 3 213.0 3 3 2 3 4 2 2 222.0 4 4 3 4 4 1...
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002455
EISBN: 978-1-62708-194-8
... may have different ratings for other casting processes. Alloy Resistance to hot cracking (a) Pressure tightness Fluidity (b) Shrinkage tendency (c) Corrosion resistance (d) Machinability (e) Weldability (f) Sand casting alloys 201.0 4 3 3 4 4 1 2 208.0 2 2 2 2...
Abstract
The selection of the best material for a particular design is intimately associated with the decisions of how to process the material or manufacture a part. This article describes the basic characteristics of manufacturing processes such as material factors, shape factors, and process factors. The influence of materials on the manufacturing cost is described with a specific example. The article discusses the design for manufacturability to minimize the total number of parts, use readily processed materials, and eliminate machining and finishing operations. It reviews the factors influencing the selection of a material for production, including material composition, heat-treated condition, surface finish, and cost of material. The article describes the material characteristics, such as terms formability, workability, castability, machinability, and weldability, that aid or hinder the production of a part without defects.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... Resistance to hot cracking (a) Pressure tightness Fluidity (b) Shrinkage tendency (c) Corrosion resistance (d) Machinability (e) Weldability (f) Sand casting alloys 201.0 4 3 3 4 4 1 2 208.0 2 2 2 2 4 3 3 213.0 3 3 2 3 4 2 2 222.0 4 4 3 4 4 1 3...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... of alloys and their typical applications are summarized in Table 1 . Selected applications for aluminum casting alloys Table 1 Selected applications for aluminum casting alloys Alloy Representative applications 100.0 Electrical rotors larger than 152 mm (6 in.) in diameter 201.0...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003204
EISBN: 978-1-62708-199-3
... Typical heat treatments for aluminum alloy sand and permanent mold castings Alloy Temper Type of casting (a) Solution heat treatment (b) Aging treatment Temperature (c) Time, h Temperature (c) Time, h °C °F °C °F 201.0 (d) T4 S or P 490–500 (e) 910–930 (e) 2...
Abstract
This article discusses different heat treating techniques, including quenching, homogenizing, annealing, stress relieving, stress equalizing, quench hardening, strain hardening, tempering, solution heat treating, and precipitation heat treating (age hardening) for different grades of aluminum alloys, copper alloys, magnesium alloys, nickel and nickel alloys, and titanium and titanium alloys and its product forms.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
... Abstract Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality...
Abstract
Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation of electrical conductivity of alloy 2024 samples as a function of aging time at different isothermal holding temperatures.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006264
EISBN: 978-1-62708-169-6
... and permanent mold castings Table 1 Typical heat treatments for aluminum alloy sand and permanent mold castings Alloy Temper Type of casting (a) Solution heat treatment (b) Aging treatment Temperature (c) Time, h Temperature (c) Time, h °C °F °C °F 201.0 T6 S 510–515 950...
Abstract
This article presents a detailed discussion on typical thermal treatment practices for hardening of various aluminum casting alloys. These practices are solution treatment, quenching or cooling, preaging, and artificial aging at an elevated temperature. The aluminum casting alloys considered here are: Al-Cu and Al-Cu-Mg (2xx) alloys, Al-Zn-Mg (7xx) alloys, Al-Si-Mg alloys, Al-Si-Cu, and Al-Si-Cu-Mg alloys.
1