1-20 of 11812

Search Results for alloy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By R.W. Breitzig
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002188
EISBN: 978-1-62708-188-7
... Abstract Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
... Abstract The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires...
Book Chapter

By E.B. Hinshaw
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001437
EISBN: 978-1-62708-173-3
... Abstract Nickel alloys can be joined reliably by all types of welding processes or methods, with the exception of forge welding and oxyacetylene welding. This article discusses the heat treatment of nickel alloys and tabulates nominal compositions of selected weldable wrought nickel and nickel...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001467
EISBN: 978-1-62708-173-3
... Abstract Oxide - dispersion - strengthened (ODS) materials utilize extremely fine oxide dispersion for strengthening, such as nickel-base alloys or alumina. The processing techniques employed in the production of ODS alloys produce some entrapped gases, which tend to create porosity during...
Book Chapter

By Darel E. Hodgson, Ming H. Wu, Robert J. Biermann
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001100
EISBN: 978-1-62708-162-7
... Abstract This article discusses the history of shape memory alloys (SMAs) along with their properties, capabilities, and crystallography, including phase transformations that occur during thermal treatment. It describes the thermomechanical behaviors of SMAs and explains how to characterize...
Book Chapter

By W.L. Mankins, S. Lamb
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... Abstract Nickel in elemental form or alloyed with other metals and materials has made significant contributions to our present-day society and promises to continue to supply materials for a demanding future. This article provides a historical overview and physical metallurgy of nickel...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001103
EISBN: 978-1-62708-162-7
... Abstract Oxide dispersion-strengthened (ODS) alloys are produced by mechanical alloying, a process by which base metals and alloying particles are powdered together forming a metal-matrix composite. This article discusses the production of ODS superalloy powders and subsequent processing steps...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001096
EISBN: 978-1-62708-162-7
... Abstract Electrical resistance alloys include those types used in instruments, control equipment, heating elements, and devices that convert heat generated to mechanical energy. This article discusses the basic classification of electrical resistance alloys (resistance alloys, heating alloys...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004203
EISBN: 978-1-62708-184-9
... price levels, produces little incentive to change. Historically, in areas where 316L was not adequate, the high-Ni-Cr-Mo alloy C-276 (UNS N10276) was the alternate choice. In the 1970s and 1980s, numerous alloys intermediate to 316L and C-276 were developed that offered the chemical and corrosion...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006121
EISBN: 978-1-62708-175-7
... Abstract Refractory metals are extracted from ore concentrates or scrap, processed into intermediate chemicals, and then reduced to metal, usually in powder form. This article discusses the raw materials needed and the processing steps for producing pure and alloyed refractory metal powders...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006123
EISBN: 978-1-62708-175-7
... Abstract This article focuses on the selection, properties, and applications of powder metallurgy refractory metals and their alloys, including tungsten, molybdenum, tantalum, niobium, and rhenium. molybdenum niobium powder metallurgy refractory metals rhenium tantalum tungsten...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003994
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the forging characteristics of different types of refractory metals and alloys, namely, niobium and niobium alloys, molybdenum and molybdenum alloys, tantalum and tantalum alloys, and tungsten and tungsten alloys. forging molybdenum molybdenum alloys...
Image
Published: 01 January 1993
Fig. 4 Effect of alloy composition (high alloy versus low alloy concentrations of iron, silicon, manganese, and sulfur taken collectively) on the cracking tendency of postweld heat-treated René 41. Source: Ref 4 More
Image
Published: 01 January 2002
Fig. 52 Torsion fracture in an aluminum-silicon alloy (alloy 319-T5). Classic brittle torsion fracture on a plane at 45° to the axis of the cylinder. Hardness, 38 HRB; tensile strength, 179 MPa (26 ksi); total elongation, 0.5%. Source: Ref 42 More
Image
Published: 01 January 2002
Fig. 53 Macroscale brittle torsion fracture in an aluminum-silicon alloy (alloy A356 sand casting). Hardness, 38 HRB; tensile strength, 214 MPa (31 ksi); total elongation, 4%. Source: Ref 42 More
Image
Published: 01 January 2006
Fig. 11 Isocorrosion curves for alloy 600 (N06600) and alloy 201 (N02201) in caustic soda. Source: Ref 66 , 67 More
Image
Published: 01 January 2006
Fig. 17 Sulfidation behavior of type 347 stainless steel, alloy 800H, alloy HR-120, alloy 556, and alloy HR-160 in H 2 -7%CO-1.5%H 2 O-0.6%H 2 S (oxygen potential, P O 2 =10 −23 atm; sulfur potential, P S 2 =10 −9 atm; carbon activity, a c =0.3–0.4). Source: Ref 45 More
Image
Published: 01 January 2006
Fig. 2 Corrosion of an aluminum alloy hinge (7050-T74) around a copper alloy bushing (UNS C17200, beryllium copper) More
Image
Published: 01 December 2008
Fig. 2 Two margash-form zinc alloy ingots for feeding die casting alloy to the holding furnace. Note the hole that accepts a hook that slowly lowers the metal into the furnace. Source: Courtesy of Allied Metal Company, Chicago, IL More
Image
Published: 01 January 2003
Fig. 3 Welded assemblies of aluminum alloy 7005 with alloy 5356 filler metal after a 1 year exposure to seawater. (a) As-welded assembly shows severe localized corrosion in the HAZ. (b) Specimen showing the beneficial effects of postweld aging. Corrosion potentials of different areas More