1-20 of 107 Search Results for

allotropes

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006293
EISBN: 978-1-62708-163-4
... Abstract This article presents a table of the crystal structure of allotropic forms of metallic elements in terms of the Pearson symbol, space group, and prototype of the structure. The temperatures of the phase transformations are listed in degree Celsius and the pressures are in GPa. The...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005441
EISBN: 978-1-62708-196-2
... Abstract This article presents a comprehensive collection of tables that list fundamental physical constants, standard atomic weights, melting points, atomic size parameters, heats of transition, thermal properties, temperature-dependent allotropic structures, pressure-dependent allotropic...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
... provide information on the crystal structures and lattice parameters of allotropes of metallic elements. Bravais lattices crystal defects crystal structure metallic elements plastic flow CRYSTAL STRUCTURE, as defined broadly, is the arrangement of atoms or molecules in the solid state...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003149
EISBN: 978-1-62708-199-3
... Abstract This article discusses the general characteristics, primary and secondary fabrication methods, product forms, and corrosion resistance of zirconium and hafnium. It describes the physical metallurgy of zirconium and its alloys, providing details on allotropic transformation and...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006367
EISBN: 978-1-62708-192-4
... Abstract This article discusses the importance of friction and wear and the role of lubricants in composites. It highlights the progress and developments in using different forms of carbon allotropes in composites for improved friction and wear performance of materials. The article focuses on...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001084
EISBN: 978-1-62708-162-7
..., refining, and melting. It also discusses the primary and secondary fabrication of zirconium and hafnium and its alloys. The Article talks about the metallurgy of zirconium and its alloys with emphasis on allotropic transformation, cold work and recrystallization, anisotropy and preferred orientation, and...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003818
EISBN: 978-1-62708-183-2
... Abstract This article describes the allotropic modification and atmospheric corrosion of pure tin. Corrosion of pure tin due to oxidation reaction, and reaction with the other gases, water, acids, bases, and other liquid media, is discussed. The article provides information on corrosion...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006248
EISBN: 978-1-62708-163-4
... the Introduction to Alloy Phase Diagrams in this Volume. Chemical symbol Atomic number Allotrope Phase transition temperature ( T c ), K Type of magnetic ordering (a) Phase transition temperature ( T c2 ), K Type of magnetic ordering (a) Phase transition temperature ( T c3 ), K...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006158
EISBN: 978-1-62708-163-4
... … (Te) 100 hP 3 P 3 1 2 1 γSe (a) Might not exist. (b) Three allotropic forms have been reported to exist. If so, this is the structure of a metastable high-temperature allotrope. Source: J. Sangster and A.D. Pelton, J. Phase Equilib. Vol 14 (No. 2). 1993, p 246–249 ( Ref 11 ) See...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
... element obviously have the same chemical composition, but each phase is obviously distinct physically due to differences in the bonding and arrangement of atoms. Some pure elements (such as iron and titanium) are also allotropic , which means that the crystal structure of the solid phase changes with...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001430
EISBN: 978-1-62708-173-3
... potential sources of iron contamination be avoided. Steel wire brushes should not be used for interpass cleaning of titanium weldments. Titanium is a single (α) phase material with a hcp crystal structure. However, an allotropic transformation occurs at temperatures above approximately 870 °C (1600 °F...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... precipitation can occur, resulting in additional strengthening. With respect to their effects on the allotropic transformation, alloying elements in titanium are classified by three categories ( Ref 1 ): Alpha stabilizers: Elements, when dissolved in titanium, that tend to stabilize the α phase and raise...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004135
EISBN: 978-1-62708-184-9
... ). The primary corrosion reactions are the anodic oxidation of the various allotropic forms of carbon and the dissolution of platinum (probably to form complexed platinum ion, Pt 2+ , in solution). The following generic cell reaction is representative of the carbon oxidation: (Eq 7) C + 2 H 2...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006152
EISBN: 978-1-62708-163-4
... ZnS CaSb 2 ∼85.9 mP 6 P 2 1 / m … (Sb) 98.0 to 100 hR 2 R 3 m αAs (a) Room-temperature modification. (b) High-temperature modification; allotropic transformation temperature unknown. (c) Not shown on diagram Source: P.R. Subramanian, Binary Alloy Phase Diagrams...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... characteristics include the ability to undergo allotropic (that is, microstructural) transformations that allow the opportunity for hardening and strengthening through martensitic and bainitic transformations or precipitation mechanisms in addition to the ability to be readily alloyed with a wide variety of...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003735
EISBN: 978-1-62708-177-1
... allotropic form can often be considered massive transformations, because all phase changes in pure materials are composition invariant by definition. Figure 1 depicts massively transformed pure iron ( Ref 3 ) and illustrates two important characteristics of massive transformations: the irregular massive...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003085
EISBN: 978-1-62708-199-3
.... Allotropes of polymorphic elements are distinguished by small (lower-case) Greek letter prefixes. Terminal solid phases are normally designated by the symbol (in parentheses) for the allotrope of the component element, such as (Cr) or (αTi). Continuous solid solutions are designated by the names of both...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... workability of austenite and the absence of allotropic transformation. The conventional 18-8 types often are forged at temperatures up to 1260 °C (2300 °F). However, the upper temperature limit is lower for the higher-alloy grades due to metallurgical changes at higher temperatures that can cause surface...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003153
EISBN: 978-1-62708-199-3
... are more easily magnetized in the direction of the cube edge, {100}. When the silicon content in pure iron exceeds approximately 2 1 2 %, the allotropic transformation of iron from α to γ is suppressed. The absence of this transformation allows the higher silicon-iron alloy to be fully...