Skip Nav Destination
Close Modal
Search Results for
alkalis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 419 Search Results for
alkalis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004184
EISBN: 978-1-62708-184-9
... 500 companies produced chlor-alkali (a general term to cover the coproduction of chlorine and caustic soda) at more than 650 sites worldwide, with a total annual capacity of more than 51 million metric tons of chlorine. About half of all plants are located in Asia, but many of these are relatively...
Abstract
True alkaline chemicals include caustic soda or sodium hydroxide (NaOH), caustic potash or potassium hydroxide (KOH), and soda ash or sodium carbonate (Na2CO3). This article reviews alkaline chemicals and provides a basis for a general discussion on various alkaline exposures. It describes the corrosion effects of caustic soda on aluminum and aluminum alloys, iron and steel, carbon and low-alloy steels, stainless steels, high-performance austenitic alloys, nickel and nickel alloys, copper and copper alloys, titanium and titanium alloys, and zirconium and zirconium alloys. The article discusses the corrosion effects of caustic soda on nonmetallic materials: plastics, thermoplastics, thermosetting resin materials, carbon and graphite, and ceramics. It concludes with information on the effects of contamination of and by caustic and of admixtures of caustic with other chemicals, including chlorates, chlorides, chlorine/hypochlorite, mercury, sulfur, and iron.
Image
Published: 01 November 1995
Fig. 1 Effect of alkali-oxide concentration on the density of alkali-germanate glasses. Source: Ref 3
More
Image
Published: 01 November 1995
Fig. 5 Effect of alkali-oxide concentration on the refractive index of alkali-germanate glasses
More
Image
Published: 01 January 1986
Fig. 21 Positive SIMS depth profiles for alkali-lead-silicate crystal glass. (a) Hazed surface. (b) Cleaned surface. Obtained using 18 O − primary beam bombardment in an ion microscope
More
Image
Published: 01 January 1986
Fig. 5 Ion-exchange chromatogram of radioactive alkali metals. The apparatus used included a polymeric cation exchange column and radiometric detection. Source: Ref 3
More
Image
Published: 01 January 1996
Fig. 3 Fracture mechanism maps for fcc, bcc, and hcp metals, alkali halides, refractory oxides, and covalently bound materials. Note that fcc metals do not exhibit brittle modes of failure, bcc and hcp metals exhibit a limited range of ductile behavior, and alkali halides, refractory oxides
More
Image
Published: 01 January 2005
Fig. 4 Typical indicators of alkali-silica reactivity are map cracking and, in advanced cases, closed joints and attendant spalled concrete.
More
Image
Published: 01 December 1998
Fig. 3 Effect of alkali metal salt concentration on corrosion of steel at 35 °C (95 °F)
More
Image
Published: 01 January 2003
Fig. 5 Delamination of painted steel substrates treated with four different alkali phosphatations after 504 h exposure in salt spray fog. Coating, electrophoretic paint + filler + top-coat. Artificial damage, Van Laar scratch
More
Image
Published: 15 December 2019
Fig. 24 Positive secondary ion mass spectroscopy depth profiles for alkali-lead-silicate crystal glass. (a) Hazed surface. (b) Cleaned surface. Acquired using 18 O − primary beam bombardment in an ion microscope
More
Image
Published: 01 November 1995
Fig. 2 Effect of alkali-oxide concentration on the glass transition temperature of alkali-borate glasses. Source: Ref 2
More
Image
Published: 01 November 1995
Fig. 4 Effect of intermediate/alkali ratio on the electrical resistivity of lithium-aluminosilicate and lithium-galliosilicate glasses; T = 100 °C (212 °F). Source: Ref 9
More
Image
Published: 15 December 2019
Fig. 5 Isocratic separation of the ammonium ion, alkali metal cations, and alkaline earth cations with the IonPac (Thermo Fisher Scientific) CS12A column. Column dimensions: 4 mm ID by 250 mm; eluent: 18 mM methanesulfonic acid; flow rate: 1 mL/min; injection volume: 25 μL; temperature: 24 °C
More
Image
Published: 01 June 2024
Fig. 8 Existing fracture in concrete that is heavily cracked due to alkali-silica reaction (ASR). The concrete fractured through a reactive aggregate particle. The periphery of the broken aggregate and the paste surrounding the aggregate are coated with white ASR gel.
More
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006049
EISBN: 978-1-62708-172-6
... used, namely, inorganic and organic zinc-rich coatings. Common inorganic binders such as post-cured water-based alkali metal silicates, self-cured water-based alkali metal silicates, and self-cured solvent-based alkyl silicates, are reviewed. The article also compares inorganic and organic zinc-rich...
Abstract
The use of zinc in corrosion-protective coatings is due to its higher galvanic activity relative to that of steel. Pure zinc dust provides the best sacrificial protection to steel in a galvanic couple. Zinc-rich coatings can be subcategorized according to the type of binder material used, namely, inorganic and organic zinc-rich coatings. Common inorganic binders such as post-cured water-based alkali metal silicates, self-cured water-based alkali metal silicates, and self-cured solvent-based alkyl silicates, are reviewed. The article also compares inorganic and organic zinc-rich coatings, and discusses the concerns regarding zinc-rich coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003693
EISBN: 978-1-62708-182-5
... by the Society for Protective Coatings are also discussed. These include postcured water-based alkali metal silicates, self-cured water-based alkali metal silicates, and self-cured solvent-based alkyl silicates. The article concludes with information on comparisons of inorganic with organic zinc-rich coatings...
Abstract
This article describes the characteristics of zinc-rich coatings that can be subcategorized according to the type of binder material used. It discusses the formulations of zinc-rich coatings with organic binders. The three major groups of inorganic zinc-rich coatings categorized by the Society for Protective Coatings are also discussed. These include postcured water-based alkali metal silicates, self-cured water-based alkali metal silicates, and self-cured solvent-based alkyl silicates. The article concludes with information on comparisons of inorganic with organic zinc-rich coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004172
EISBN: 978-1-62708-184-9
... focuses on the key factors contributing to corrosion of electronic components, namely, chemicals (salts containing halides, sulfides, acids, and alkalis), temperature, air (polluted air), moisture, contact between dissimilar metals in a wet condition, applied potential differences, and stress...
Abstract
In a typical semiconductor integrated circuits (SICs) component, corrosion may be observed at the chip level and at the termination area of the lead frames that are plated with a solderable metal or alloy, such as tin and tin-lead alloys that are susceptible to corrosion. This article focuses on the key factors contributing to corrosion of electronic components, namely, chemicals (salts containing halides, sulfides, acids, and alkalis), temperature, air (polluted air), moisture, contact between dissimilar metals in a wet condition, applied potential differences, and stress. It discusses the chip corrosion and oxidation of tin and tin-lead alloys (solders) in SIC. The article also addresses the corrosion of the device terminations resulting in lead (termination) tarnishing that are caused by various factors, including galvanic corrosion, chemical residues, base metal migration and plating additives.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
... Abstract The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur...
Abstract
The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur, and chlorine. This article describes the two categories of fireside corrosion based on location in the furnace: waterwall corrosion in the lower furnace and fuel ash corrosion of superheaters and reheaters in the upper furnace. It discusses prevention methods, including changes to operating parameters and application of protective cladding or coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003826
EISBN: 978-1-62708-183-2
... of hafnium in specific media, namely, water, steam, hydrochloric acid, nitric acid, sulfuric acid, alkalis, organics, molten metals, and gases. Forms of corrosion, namely, galvanic corrosion, crevice corrosion, and pitting corrosion are included. The article explains the corrosion of hafnium alloys...
Abstract
This article describes the processes involved in the production of hafnium and its alloys. It discusses the physical, mechanical and chemical properties of hafnium. The aqueous corrosion testing of hafnium and its alloys is detailed. The article reviews the corrosion resistance of hafnium in specific media, namely, water, steam, hydrochloric acid, nitric acid, sulfuric acid, alkalis, organics, molten metals, and gases. Forms of corrosion, namely, galvanic corrosion, crevice corrosion, and pitting corrosion are included. The article explains the corrosion of hafnium alloys such as hafnium-zirconium alloys and hafnium-tantalum alloys. It also deals with the applications of hafnium and its alloys in the nuclear and chemical industries.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
.... The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
1