Skip Nav Destination
Close Modal
By
Gerhardus H. Koch, Michiel P.H. Brongers, Neil G. Thompson, Y. Paul Virmani, Joe H. Payer
Search Results for
airplane corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 110 Search Results for
airplane corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004169
EISBN: 978-1-62708-184-9
... Abstract This article describes the commonly observed forms of airplane corrosion, namely: general corrosion, exfoliation corrosion, pitting corrosion, microbiologically induced corrosion, galvanic corrosion, filiform corrosion, crevice corrosion, stress-corrosion cracking, and fretting...
Abstract
This article describes the commonly observed forms of airplane corrosion, namely: general corrosion, exfoliation corrosion, pitting corrosion, microbiologically induced corrosion, galvanic corrosion, filiform corrosion, crevice corrosion, stress-corrosion cracking, and fretting. It discusses the factors influencing airplane corrosion from the manufacturing perspective: design, manufacturing, and service-related factors. The article explains the collection of corrosion data and provides an overview of the implementation and evolution of airline corrosion prevention and control programs and directions being considered in the design for corrosion prevention of airplanes.
Image
Published: 01 January 2006
Fig. 10 Fuselage corrosion locations learned from airplanes in service. (a) Upper and lower lobe. (b) Lower section of fuselage. BL 0 is the lowest longitudinal line of the fuselage (butt line). (c) Aft and wing
More
Image
Published: 01 January 2006
Fig. 22 Percentage of in-service airplanes with CPCP reports of level 2 corrosion. Refer to Fig. 27
More
Image
Published: 01 June 2024
Fig. 52 Secondary electron SEM image of a fatigue fracture that initiated at a region of intercrystalline stress-corrosion cracking in a low-service-time aluminum alloy airplane propeller blade. A corrosion product covered portions of the surface in the intergranular area. Two smaller
More
Image
Published: 01 June 2024
Fig. 29 Digital microscope fractograph of fatigue crack origins at corrosion pits in a steel airplane main landing gear leg
More
Image
Published: 01 January 2006
Fig. 25 Summary and evolution of Corrosion Prevention and Control Programs (CPCP) programs for several groups of airplane models. See text for acronyms.
More
Image
Published: 01 January 2006
Fig. 28 Initial Corrosion Prevention and Control Program inspection task. Initial and repeat interval for “Classic” 747, 737 airplanes and their more modern derivatives. Location of the area of inspection is given.
More
Image
Published: 01 June 2024
Fig. 50 Secondary electron SEM fractograph showing intercrystalline fracture features along with microvoid coalescence features typical of stress-corrosion cracking of a type 1095 steel spiral spring from an airplane magneto exposed to condensed moisture
More
Image
Published: 01 June 2024
Fig. 51 Secondary electron SEM fractographs showing the fracture surface of a commercial airplane main landing gear truck beam. The truck beam is fabricated from type 300M steel in the tempered martensitic condition. The truck beam fractured as a result of stress-corrosion cracking (SCC) due
More
Image
Published: 01 June 2024
Fig. 49 Secondary electron SEM fractograph of a fractured commercial airplane landing gear. The gear is fabricated from quenched-and-tempered type 300M steel. The fractograph shows the transition from stress-corrosion cracking (SCC) to fatigue to final overstress fracture once a critical crack
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002392
EISBN: 978-1-62708-193-1
... approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components. aircrafts corrosion damage tolerance fatigue life fracture...
Abstract
This article describes two analysis methods that are used to determine the life of aircrafts: fatigue life and fracture mechanics methods. The life limiting factors that control the durability of the aircraft are also discussed. The article provides an overview of the various approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003427
EISBN: 978-1-62708-195-5
... Abstract This article focuses on the factors to be considered for selecting fasteners for joining carbon fiber composites. These considerations include corrosion compatibility, fastener materials, strength, stiffness, head configurations, importance of clamp-up, hole fit, and lightning...
Abstract
This article focuses on the factors to be considered for selecting fasteners for joining carbon fiber composites. These considerations include corrosion compatibility, fastener materials, strength, stiffness, head configurations, importance of clamp-up, hole fit, and lightning protection.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
..., or hardness (micro or Rockwell) testing. Corrosion properties may also be of interest and studied by various corrosion techniques, including accelerated corrosion tests. Aircraft component geometries may also be obtained using common tools and techniques. For instance, scales, calipers, or micrometers may...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003477
EISBN: 978-1-62708-195-5
... being replaced by lighter composite wings with improved fatigue characteristics and much greater resistance to corrosion. The A-6 wing was being designed and built by Boeing Military Airplane Company. The A-6 replacement program requires a wing structural box made of carbon- fiber-reinforced epoxy...
Abstract
This article provides information on the applications of fiber-reinforced composites in commercial and military aircrafts. It tabulates the composite components in various types of aircraft. The applications of the composites in the components of Boeing 727, 737, 757, 767, 777, and 777-200 are schematically illustrated.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006843
EISBN: 978-1-62708-387-4
... surface is performed. This work is slow and methodical because, as contamination and corrosion products are removed, new information is revealed, while irreversible changes in the sample ensue. One technique is to use cellulose triacetate replicas to “peel off” layers of contamination and loose corrosion...
Abstract
This article presents the concept of fracture mechanisms in general terms in order to impart a practical understanding as well as enable readers to develop the ability to identify the basic fracture mechanisms correctly based on microscope observations. The key microscopic features of fracture surfaces are described and illustrated for the important types of fracture mechanisms. It provides a detailed discussion on environmentally assisted crack initiation and growth.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004144
EISBN: 978-1-62708-184-9
... the implementation of CPCP programs has dramatically reduced corrosion damage of aircraft structures. Significant improvements have also been made in the corrosion design and manufacturing of new airplanes. Boeing's newest commercial aircraft, the 787, will use approximately 60% less aluminum and significantly more...
Abstract
This article provides a summary of the concepts discussed in the Section “Corrosion in Specific Industries” in the ASM Handbook, Volume 13C:Corrosion: Environments and Industries. This Section applies the fundamental understanding of corrosion and knowledge of materials of construction to practical applications. The industries addressed are nuclear power, fossil and alternative fuel, land transportation, air transportation, microelectronics, chemical processing, pulp and paper, food and beverage, pharmaceutical and medical technology, petroleum and petrochemical, building, and mining and metal processing.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006588
EISBN: 978-1-62708-210-5
...-strength sand and permanent-mold castings. It has a good combination of mechanical properties and its corrosion resistance is equivalent to that of the aluminum-silicon alloys. It is dimensionally stable. It is used for highly stressed castings, housings, machinery parts, fittings, airplane and automobile...
Abstract
Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003707
EISBN: 978-1-62708-182-5
... downtime ($0.8 billion). Aircraft In 1998, the combined commercial aircraft fleet operated by U.S. airlines was more than 7000 airplanes. At the start of the jet age (1950s to 1960s), little or no attention was paid to corrosion and corrosion control. One of the concerns is the continued aging...
Abstract
This article first describes the two methods used in the 1998 U.S. corrosion cost study. In the first method, the cost was determined by summing the costs for corrosion control methods and contract services. In the second, the cost of corrosion was first determined for specific industry sectors and then extrapolated to calculate a national total corrosion cost. The article then reports the results and conclusions of the study. It concludes with information on corrosion prevention strategies.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003457
EISBN: 978-1-62708-195-5
... analyzing reported incident data for these components. The sample included about 1400 aircraft (7000 components), which had accumulated in excess of 15 million hours and 10 million flight cycles since they entered service, through July 1990. Figures 1 , 2 , and 3 show the incidents per airplane per year...
Abstract
This article provides non-proprietary and non-competition-sensitive information related to aircraft applications. It presents an overview of reliability and commonly used measurements. Failure modes that cause the negative performance are reviewed based on many types of sources. These include manufacturer service bulletins, reliability and customer service departments, literature reviews, demonstration programs, in-service evaluations, design guides, and surveys of commercial and military aircraft maintenance organizations. The article also describes lessons learned while attempting to avoid overlapping maintainability, reparability, and materials choice.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
... of the investigations was MIL-A-83444, “Airplane Damage Tolerance Requirements,” issued in July 1974. This document specified the fracture mechanics principles to be used in the design of all future military aircraft. Since the release of MIL-A-83444, all USAF aircraft previously designed to the Safe-Life philosophy...
Abstract
Damage tolerance is a philosophy used for maintaining the structural safety of commercial transport aircrafts. This article describes the structural evaluations necessary to comply with the regulations contained in the Federal Air worthiness Requirements 25.571 whose guidance is given in Advisory Circular 25.571-1A from the Federal Aviation Administration. It provides an overview of the historical evolution of damage tolerance philosophy and presents a discussion of the design philosophies and a summary of the evaluation tasks for damage tolerance certification.
1