Skip Nav Destination
Close Modal
By
Kevin J. Kovaleski, David F. Pulley
By
K.K. Sankaran, R. Perez, H. Smith
By
Mitchell P. Kaplan, Timothy A. Wolff
By
T. Swift
By
C.C. Poe, Jr.
By
Ellen E. Wright, Suzanne F. Uchneat
By
Mark Pollack
By
Mitchell P. Kaplan, John W. Lincoln
By
Todd M. Osman, Joseph D. Rigney
Search Results for
aircrafts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1176
Search Results for aircrafts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003477
EISBN: 978-1-62708-195-5
... Abstract This article provides information on the applications of fiber-reinforced composites in commercial and military aircrafts. It tabulates the composite components in various types of aircraft. The applications of the composites in the components of Boeing 727, 737, 757, 767, 777, and 777...
Abstract
This article provides information on the applications of fiber-reinforced composites in commercial and military aircrafts. It tabulates the composite components in various types of aircraft. The applications of the composites in the components of Boeing 727, 737, 757, 767, 777, and 777-200 are schematically illustrated.
Book Chapter
Finishing Systems for Naval Aircraft
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004125
EISBN: 978-1-62708-184-9
... Abstract This article describes the protective coatings technology used in naval aircrafts. It reviews the future needs and trends of the protective coatings technology based on advancing technology, environmental concerns, and operational requirements. The article discusses the standard...
Abstract
This article describes the protective coatings technology used in naval aircrafts. It reviews the future needs and trends of the protective coatings technology based on advancing technology, environmental concerns, and operational requirements. The article discusses the standard finishing systems for aircrafts: the surface pretreatment system, primer, topcoat, advanced-performance topcoat, self-priming topcoat, and specialty coatings. It presents safe compliant solutions to environmental problems associated with the protective coatings technology. These solutions include the use of environmental regulations and hazardous materials, nonchromated pretreatments, waterborne technology, high-solids technology, and touch-up paints. The article also deals with the use of electrodeposition coatings, powder coatings, adhesive films, paint application equipment, and non-chromated sealants in the protective coatings technology.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004127
EISBN: 978-1-62708-184-9
... Abstract This article describes the influences of the operational environments of U.S. Navy aircraft during corrosion-control process. The most widely used materials in airframe structures and components, such as aluminum, steel, titanium, and magnesium alloy systems, are reviewed. The article...
Abstract
This article describes the influences of the operational environments of U.S. Navy aircraft during corrosion-control process. The most widely used materials in airframe structures and components, such as aluminum, steel, titanium, and magnesium alloy systems, are reviewed. The article provides information on the inspections steps, corrosion-control issues, and corrosion-prevention strategies for naval aircraft. It contains a table that lists typical locations of corrosion on the aircraft. The article also provides examples of aircraft corrosion damage.
Book Chapter
Military Aircraft Corrosion Fatigue
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004128
EISBN: 978-1-62708-184-9
... Abstract Corrosion, fatigue, and their synergistic interactions are among the principal causes of damage to aircraft structures. This article describes aircraft corrosion fatigue assessment in the context of different approaches used to manage aircraft structural integrity, schedule aircraft...
Abstract
Corrosion, fatigue, and their synergistic interactions are among the principal causes of damage to aircraft structures. This article describes aircraft corrosion fatigue assessment in the context of different approaches used to manage aircraft structural integrity, schedule aircraft inspection intervals, and perform repair and maintenance of aircraft in service. It illustrates the types of corrosive attack observed in aircraft structures, including uniform, galvanic, pitting, filiform, fretting, intergranular, exfoliation corrosion, and stress-corrosion cracking. The article discusses geometric parameters such as pit dimensions, surface roughness, loss of metal thickness, and volume increase due to pillowing to quantitatively characterize the types of corrosion. It also explains the two most common fatigue life assessment methods used in the military aerospace industry: fatigue crack initiation and crack growth analysis.
Book Chapter
Life Extension and Damage Tolerance of Aircraft
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002392
EISBN: 978-1-62708-193-1
... Abstract This article describes two analysis methods that are used to determine the life of aircrafts: fatigue life and fracture mechanics methods. The life limiting factors that control the durability of the aircraft are also discussed. The article provides an overview of the various...
Abstract
This article describes two analysis methods that are used to determine the life of aircrafts: fatigue life and fracture mechanics methods. The life limiting factors that control the durability of the aircraft are also discussed. The article provides an overview of the various approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components.
Book Chapter
Damage Tolerance Certification of Commercial Aircraft
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
... Abstract Damage tolerance is a philosophy used for maintaining the structural safety of commercial transport aircrafts. This article describes the structural evaluations necessary to comply with the regulations contained in the Federal Air worthiness Requirements 25.571 whose guidance is given...
Abstract
Damage tolerance is a philosophy used for maintaining the structural safety of commercial transport aircrafts. This article describes the structural evaluations necessary to comply with the regulations contained in the Federal Air worthiness Requirements 25.571 whose guidance is given in Advisory Circular 25.571-1A from the Federal Aviation Administration. It provides an overview of the historical evolution of damage tolerance philosophy and presents a discussion of the design philosophies and a summary of the evaluation tasks for damage tolerance certification.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006374
EISBN: 978-1-62708-192-4
... Abstract This article focuses on friction and wear of automotive and aircraft brakes. It provides a comparison of friction and wear behaviors, frictional characteristics, and frictional performance of the friction materials. The article describes the components of brake friction materials...
Abstract
This article focuses on friction and wear of automotive and aircraft brakes. It provides a comparison of friction and wear behaviors, frictional characteristics, and frictional performance of the friction materials. The article describes the components of brake friction materials and the classifications of brake lining materials. It discusses the effect of formulation compositions and manufacturing processes and the effect of braking operation conditions. The article provides information on aircraft brake linings, which operate under a wide range of kinetic energy conditions. The morphology effect of graphite on automotive brake drum and disk is explained. The article also describes the characteristics of specific wear rates for both normal and local cast iron in automotive brake drums and disk rotors. It provides information on noises, vibrations, and harshness caused by brake pads. The article concludes with information on physical and chemical testing of brakes and toxicity of brake formulation and regulations.
Book Chapter
Residual Strength of Composite Aircraft Structures with Damage
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... Abstract This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive...
Abstract
This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods, to predict the residual strength of the structures.
Book Chapter
An Overview of Aircraft Accident Investigation and Component Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... Abstract This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Book Chapter
Replacement for Hard Chrome Plating on Aircraft Landing Gear
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005739
EISBN: 978-1-62708-171-9
... metals in airframe structures. This article summarizes the results of materials and component testing. It also presents a cost/benefit analysis of HVOF WC/17Co and WC/10Co4Cr coatings on aircraft landing gear components. aircraft landing gears corrosion cost assessment fatigue hard chrome...
Abstract
High-velocity oxyfuel (HVOF)-applied thermal spray coatings are viable candidates for replacement of hard chrome in numerous applications. HVOF thermal spraying can be used to deposit both metal alloy and cermet coatings that are dense and highly adherent to all the commonly used base metals in airframe structures. This article summarizes the results of materials and component testing. It also presents a cost/benefit analysis of HVOF WC/17Co and WC/10Co4Cr coatings on aircraft landing gear components.
Book Chapter
The U.S. Air Force Approach to Aircraft Damage Tolerant Design
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002394
EISBN: 978-1-62708-193-1
... the particular aspects that relate to damage tolerance in aircraft design. It discusses the use of fracture mechanics as a method of predicting failure, understanding failure mechanisms, and suggesting inspection methods to protect against failure in pressure vessels. Various programs of U.S. Air Force to design...
Abstract
The inclusion of damage tolerance design and a systematic review of design procedures allow the U.S. Air Force to design, manufacture, and maintain systems that are structurally safe and economically prudent. After a brief introduction of fracture mechanics, this article describes the particular aspects that relate to damage tolerance in aircraft design. It discusses the use of fracture mechanics as a method of predicting failure, understanding failure mechanisms, and suggesting inspection methods to protect against failure in pressure vessels. Various programs of U.S. Air Force to design aircraft structure, namely, airframe structural integrity programs, engine structural integrity program, and mechanical subsystems structural integrity program are also discussed.
Image
Fatigue cracking in an aircraft wing fitting for the F-111 Aircraft 94 that...
Available to Purchase
in Failure Analysis and Life Assessment of Structural Components and Equipment
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 4 Fatigue cracking in an aircraft wing fitting for the F-111 Aircraft 94 that crashed in 1969. (a) and (b) Location of the left wing-pivot box fitting. The 22 mm (0.91 in.) material defect was not observed during inspection, and a fatigue crack initiated and grew for only about 0.38 mm
More
Image
Fatigue cracking in an aircraft wing fitting for the F-111 aircraft 94 that...
Available to Purchase
in Failure Prevention through Life Assessment of Structural Components and Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 4 Fatigue cracking in an aircraft wing fitting for the F-111 aircraft 94 that crashed in 1969. (a) and (b) Location of the left wing pivot box fitting. The 23 mm (0.91 in.) material defect was not observed during inspection, and a fatigue crack initiated and grew for only approximately
More
Book Chapter
Introduction to the Mechanical Behavior of Metals
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003254
EISBN: 978-1-62708-176-4
Abstract
Mechanical properties are described as the relationship between forces (or stresses) acting on a material and the resistance of the material to deformation (i.e., strains) and fracture. This article briefly introduces the typical relationships between metallurgical features and the mechanical behavior of metals. It explains the deformation and fracture mechanisms of these metals. Typical properties measured during mechanical testing related to these deformation mechanisms and the microstructures of metals are discussed. The article reviews the various factors that affect the deformation response of the metal: strain rate, temperature, nature of loading, stress-corrosion cracking, and presence of notches.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001452
EISBN: 978-1-62708-173-3
Abstract
The quality of brazed stainless steel joints depends on the selection of the brazing process, process temperature, filler metal, and the type of protective atmosphere or flux. This article provides a detailed discussion on the applicability and brazeability of stainless steel and lays an emphasis on the selection of suitable filler metal, brazing processes, and its corresponding furnace atmosphere for brazing different grades of stainless steel. The types of brazing processes include torch brazing, furnace brazing in different atmospheres (dissociated ammonia, dry hydrogen, and vacuum atmosphere), dip brazing in salt bath, and high-energy-beam brazing. A complete list of the typical compositions and properties of standard brazing filler metals for brazing stainless steel is also provided.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001344
EISBN: 978-1-62708-173-3
Abstract
This article presents an introduction to brazing, including information on its mechanics, advantages, and limitations. It reviews soldering with emphasis on chronology, solder metals, and flux technology. The article also provides useful information on mass, wave, and drag soldering. It presents a table which contains information on the comparison of soldering, brazing, and welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001345
EISBN: 978-1-62708-173-3
Abstract
This article describes the physical principles of brazing with illustrations and details elements of the brazing process. The elements of brazing process include filler-metal flow, base-metal characteristics, filler-metal characteristics, surface preparation, joint design and clearance, temperature and time, rate and source of heating, and protection by an atmosphere or flux. The article explains the different types of brazing processes: manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing, infrared (quartz) brazing, exothermic brazing, electron-beam and laser brazing, microwave brazing, and braze welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003396
EISBN: 978-1-62708-195-5
... Abstract Affordability is the key issue facing design engineers and manufacturers of composite components for current and next-generation aircraft, spacecraft, propulsion systems, and other advanced applications. This article describes the software tools available for modeling and analyzing...
Abstract
Affordability is the key issue facing design engineers and manufacturers of composite components for current and next-generation aircraft, spacecraft, propulsion systems, and other advanced applications. This article describes the software tools available for modeling and analyzing costs associated with design and manufacturing options for advanced composites programs. It presents an example of a composite exhaust nozzle shroud where the design and manufacture options were analyzed and adjusted, based on the use of cost analysis tools. The article also lists some of the attributes found in various cost modeling software and the potential cost benefits.
1