1-20 of 895 Search Results for

aircraft structures

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... Abstract This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive...
Image
Published: 01 January 2006
Fig. 10 Corrosion of the aircraft structure from the inside. A hidden corrosion phenomenon called “pillowing” occurs where corrosion products grow under the aluminum skin and puffs up the top surface of the thin metal sheet in the area around fasteners. More
Image
Published: 01 January 2001
Fig. 23 Composite aircraft structure by weight More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004128
EISBN: 978-1-62708-184-9
... Abstract Corrosion, fatigue, and their synergistic interactions are among the principal causes of damage to aircraft structures. This article describes aircraft corrosion fatigue assessment in the context of different approaches used to manage aircraft structural integrity, schedule aircraft...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003428
EISBN: 978-1-62708-195-5
... Abstract Environmental effects of ground and flight environments, including temperature extremes, damage by chemical fluids, moisture, and so forth, affect the durability of polymer-matrix composites. This article provides information on corrosion control methods in aircraft structures...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002394
EISBN: 978-1-62708-193-1
... aircraft structure, namely, airframe structural integrity programs, engine structural integrity program, and mechanical subsystems structural integrity program are also discussed. air force aircraft design aircraft structure airframe structural integrity damage tolerance engine structural...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003706
EISBN: 978-1-62708-182-5
... in order to consider the effects of corrosion. These philosophies include crack initiation used for safe-life design and crack growth used for damage tolerance. The article presents the methodology for computing the effects of real-time age degradation on an aircraft structure for two different corrosion...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002392
EISBN: 978-1-62708-193-1
... approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components. aircrafts corrosion damage tolerance fatigue life fracture...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006450
EISBN: 978-1-62708-190-0
..., bridge unbalance system, induction bridge system, and through transmission system. The article concludes with a discussion on the inspection of aircraft structural and engine components. aircraft structures bridge unbalance system coil impedance eddy-current inspection electrical conductivity...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003452
EISBN: 978-1-62708-195-5
... bonded repair. Some examples of successful repairs to military aircraft are also discussed. composites bonded repair advanced composite repairs adhesively bonded repair military aircraft metal structures MODERN AIRCRAFT are becoming increasingly sophisticated and therefore more expensive...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003451
EISBN: 978-1-62708-195-5
... as possible. The Society of Automotive Engineers (SAE) and ATA had similar committees at the time. The first document resulting from CRTF was IATA DOC: GEN: 3043, “Guidance Material for the Design, Maintenance, Inspection, and Repair of Thermosetting Epoxy Matrix Composite Aircraft Structures,” in 1990...
Image
Published: 01 August 2018
Fig. 2 Illustration of the role of nondestructive testing in a deterministic approach to damage tolerance for structural integrity. ASIP, Aircraft Structural Integrity Program. Source: Ref 5 More
Image
Published: 01 January 2005
Fig. 10 Typical Gleeble curve of reduction of area versus test temperature for an aircraft structural steel (AF 1410). At the PDT, dynamic recrystallization occurs leading to an equiaxed grain structure. Fracture appearance is ductile. More
Image
Published: 30 November 2018
Fig. 4 Thin-section case study with aluminum alloy 355 sand casting produced for an aircraft structural application. Dimensions in inches. Adapted from Ref 5 More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... systems far beyond their original design lives ( Ref 2 , 3 ). This article is mainly devoted to aircraft, but most of the considerations and the criteria exposed can be extended to land and sea vehicles. In a general sense, aging vehicles are characterized by the deterioration of structural strength...
Image
Published: 01 January 1987
Fig. 980 Fatigue fracture of an aluminum alloy 2014-T6 heat-treated forging. Details of the heat-treatment procedure were not available. Some machining was carried out on the forging prior to heat treatment. The aircraft structural component cracked in service. The horizontal lines More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004127
EISBN: 978-1-62708-184-9
... Abstract This article describes the influences of the operational environments of U.S. Navy aircraft during corrosion-control process. The most widely used materials in airframe structures and components, such as aluminum, steel, titanium, and magnesium alloy systems, are reviewed. The article...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
... Abstract Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003457
EISBN: 978-1-62708-195-5
...,” structures made of composites are expected by the aircraft operator to be equivalent to or better than the previous aircraft models or better than the same structure made in metallic materials; preferably they will require no routine maintenance. The “period of time” for structures is usually the life...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
... to aluminum and aluminum to beryllium Car radiators, heat exchangers, honeycomb aircraft structures, structural parts 2 Cu-X, solid solution Cu-Zn peritectic Cu-Sn, peritectic BCu RBCuZn None Preforms, wire, rods, foil, powder, RS foil Copper and copper alloys, copper to mild steel, copper...