Skip Nav Destination
Close Modal
Search Results for
aerodynamic time-of-flight method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 45 Search Results for
aerodynamic time-of-flight method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006096
EISBN: 978-1-62708-175-7
... distributions. Common particle size measuring techniques discussed in this article include sieve analysis, quantitative image analysis, laser diffraction, sedimentation methods, aerodynamic time-of-flight method, electrical zone sensing, and photon correlation spectroscopy. The advantages and disadvantages...
Abstract
Particle size and size distribution have a significant effect on the behavior of metal powders during their processing. This article provides an overview of the sample preparation process for particle size measurement, which is a key step in the measurement of particle size distributions. Common particle size measuring techniques discussed in this article include sieve analysis, quantitative image analysis, laser diffraction, sedimentation methods, aerodynamic time-of-flight method, electrical zone sensing, and photon correlation spectroscopy. The advantages and disadvantages of these methods are reviewed.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003459
EISBN: 978-1-62708-195-5
..., for example. It is more suitable for small-area inspections because it is difficult to cover large areas using typical portable equipment in a reasonable time. Delaminations and disbonds can be detected deeper down inside the structure than those detectable using tap testing. The method provides information...
Abstract
This article begins with an overview of the various types of damage that take place in advanced composite components. These include holes and punctures, delaminations, disbonds, core and resin damage, and water intrusion. The article describes various damage detection techniques, such as visual inspection, tap testing, and ultrasonic inspection, in field conditions. Designing for repair involves various considerations including structure types and repair types. The types of repairs together with other issues surrounding advanced composite repair technology are discussed. The article also provides a discussion on the design considerations, instructions, and materials for repair. It explains various paint-removal methods for composites. The article concludes with a discussion on curing equipment such as portable repair systems, vacuum bags, and ovens and autoclaves.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
... approach, which became known as the “Safe-Life” method. (See the section “Structural Design Philosophies” in this article.) This approach, used in the development of USAF aircraft in the 1960s, involved analysis and testing to four times the anticipated service life. On the commercial scene, another...
Abstract
Damage tolerance is a philosophy used for maintaining the structural safety of commercial transport aircrafts. This article describes the structural evaluations necessary to comply with the regulations contained in the Federal Air worthiness Requirements 25.571 whose guidance is given in Advisory Circular 25.571-1A from the Federal Aviation Administration. It provides an overview of the historical evolution of damage tolerance philosophy and presents a discussion of the design philosophies and a summary of the evaluation tasks for damage tolerance certification.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003458
EISBN: 978-1-62708-195-5
... must maintain the integrity of structural stiffness. The following requirements must be considered in a stiffness-critical repair design: Deflection limitations of flying surfaces, such as wings and flight controls, are based on aerodynamic and performance requirements of the aircraft, repair...
Abstract
This article discusses three typical repair types for composite structures: temporary repairs, adhesively bonded repairs, and bolted repairs. It contains a table that lists general design requirements and considerations for the repair of composite structures. The article describes ten steps for an engineering repair approach to effectively restore structural integrity to damaged composite components. Management, validation and certification of repairs are also discussed. The article presents the design guidelines for analyzing the damage and possible strategies for making a repair. It reviews three repair schemes used in repair design analysis, namely, core replacement, adhesively bonded patch, and mechanically fastened patch. The article also emphasizes the various pitfalls and problems in repair design for composite structures.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003284
EISBN: 978-1-62708-176-4
... for measuring particle velocity. Adapted from Ref 20 Another relatively simple method, which is well suited to use with the gas-blast method, involves measuring the time of flight of the particles between two transverse light beams a short distance apart ( Ref 11 , 21 ). In one version of this method...
Abstract
This article addresses the important variables in erosion, such as particle impact velocity; particle impact angle; particle size, shape, and material; and ambient temperature. It describes four erosion test methods: the gas-blast method, a method using a centrifugal accelerator test rig, the wind-tunnel test, and the whirling arm test. The article also details the various test methods used to measure impact velocity of particle and data analysis and interpretation of these four methods.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003457
EISBN: 978-1-62708-195-5
... (e.g., 87% completed flights). Each type of event can be expressed as a percent (such as 97% on-time arrivals), frequency (e.g., 5 cancellations per year), or rate that normalizes based on use of the system, part, or aircraft (e.g., 0.0001 in-flight shutdowns per flying hour). For components, the most...
Abstract
This article provides non-proprietary and non-competition-sensitive information related to aircraft applications. It presents an overview of reliability and commonly used measurements. Failure modes that cause the negative performance are reviewed based on many types of sources. These include manufacturer service bulletins, reliability and customer service departments, literature reviews, demonstration programs, in-service evaluations, design guides, and surveys of commercial and military aircraft maintenance organizations. The article also describes lessons learned while attempting to avoid overlapping maintainability, reparability, and materials choice.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005957
EISBN: 978-1-62708-166-5
... of classifying furnaces is based on the heating or energy input method. It can be divided into combustion-based heating, electric heating methods, and aerodynamic furnaces where heat is generated by rotation of a fan ( Ref 10 ). With combustion-based (fuel-based) process heating, heat is generated...
Abstract
Furnaces are one of the most versatile types of industrial appliances that span many different areas of use. This article discusses the classification of various furnaces used in heat treating based on the mode of operation (batch-type furnaces and continuous-type furnaces), application, heating method, mode of heat transfer, type of materials handling system, and mode of waste heat recovery (recuperation and regeneration). It provides information on uniform temperature distribution, the general requirements and selection criteria for insulation materials, as well as the basic safety requirements of these furnaces.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... is a general list of the types of information that may be useful to consider as part of an aircraft investigation. Details of the Accident Details of the accident should include: Incident date, time, and location Departure airport and intended destination airport Weather Flight tracker...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... singularly complicated items is significant. Additionally, the knowledge that is required spans many different disciplines. These disciplines, in the case of aircraft, can include aerodynamics, fluid flow, mechanics, mechanisms, structures, metallurgy, materials science, corrosion, inspection methods...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004127
EISBN: 978-1-62708-184-9
... are in themselves very severe operational environments, most navy aircraft spend a considerable amount of time on the ground. Therefore, the ground environment is an important consideration to overall corrosion-prevention strategies. It has been found through corrosion monitoring of military sites and in-flight...
Abstract
This article describes the influences of the operational environments of U.S. Navy aircraft during corrosion-control process. The most widely used materials in airframe structures and components, such as aluminum, steel, titanium, and magnesium alloy systems, are reviewed. The article provides information on the inspections steps, corrosion-control issues, and corrosion-prevention strategies for naval aircraft. It contains a table that lists typical locations of corrosion on the aircraft. The article also provides examples of aircraft corrosion damage.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003452
EISBN: 978-1-62708-195-5
... inspection (NDI) methods can subsequently be used to confirm the effectiveness of the repair in service. Not having to remove the defect is one of the ways in which significant savings in repair time can be achieved. A major difference between mechanically fastened and adhesively bonded joints...
Abstract
Composite bonded repair technology is based on the use of advanced composite repairs or reinforcements that are adhesively bonded to a damaged structure. This article discusses the key steps that are normally encountered in the design, certification, and application of an adhesively bonded repair. Some examples of successful repairs to military aircraft are also discussed.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
... Materials Association (SACMA) test methods. Cofabrication quality-assurance testing takes place during the actual fabrication of the repair scheme and its placement on the damaged area. The testing in effect is simple in that little expense and time is required, but such tests have a large impact...
Abstract
Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes the considerations for maintainability of the composite structures during the conceptual design phase. Sources of the defects and damage, such as manufacturing defects and in-service defects, are reviewed. The article describes the nondestructive inspection methods that are used in the repair of composite structures to locate damage, characterize the extent of damage, and ensure post-repair quality. It lists suggestions that can be used as design guidelines for adhesive bonding, general composite structure, sandwich structure, material selection, and lightning-strike protection. The article also provides the basic considerations for personnel, facilities, and equipment during maintenance.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... Board, or NTSB, report, Ref 16 ) 1986 On January 28, 1986, the National Aeronautics and Space Administration (NASA) Space shuttle Challenger broke apart 73 s into its flight, killing all 7 astronauts on board. The investigation showed aerodynamic forces broke the shuttle apart after a structural...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005514
EISBN: 978-1-62708-197-9
... of the sample as a function of time. There are two methods of employing it: By monitoring the heat flux at a constant rate of temperature change, thermal events may be monitored. By maintaining a fixed heat flux, thermal events will cause a response from the rate of temperature change. The method...
Abstract
The measurement of thermophysical properties of metal alloys, especially at high temperatures, is difficult because of the reactivity of some alloys. This article reviews the methods available for measurement of thermal and other physical properties for liquid, semi-solid, and solid commercial alloys, including adiabatic calorimetry, modulated calorimetry, Calvet calorimetry, single-pan calorimetry, and drop calorimetry. It describes differential scanning calorimetry and differential temperature analysis for measuring transition temperatures such as phase transformation or glass transition temperatures. The article schematically illustrates the laser flash apparatus for measuring the thermal diffusivity of solids and oscillation viscometer for measurements of the viscosity of metals. A summary of the measurement methods is presented in tables.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... the magnitude of the applied load by factors of three or more. In this regard, the “hole cold expansion” ( Fig. 17 ) is a practical method to repair corroded or fatigue cracked holes and at the same time to ensure continued airworthiness by inducing beneficial annular residual compressive stresses ( Ref 30...
Abstract
Aging is a process where the structural and/or functional integrity of components will be continuously degraded by exposure to the environmental conditions under which they are operated. This article discusses aging mechanisms in various components of military systems such as structural parts, engines, and subsystems. It describes the aging management processes such as full-scale structural testing and practical life-enhancement methods. The article reviews control and prevention systems such as usage and health monitoring systems necessary to provide effective corrosion maintenance on military systems. Failure prediction techniques, namely, the equivalent pre-crack size approach, life-cycle cost modeling and simulation, and holistic life-prediction methodology are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... became known as the “safe-life” method. This safe-life approach, used in the development of USAF aircraft in the 1960s, involved analysis and testing to four times the anticipated service life. On the commercial scene, another philosophy, “fail safety,” was introduced in the early 1960s, and a choice...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004169
EISBN: 978-1-62708-184-9
... influenced by aircraft loads factors (the percent of seats occupied on any flight), and airplane utilization rates (the number of flight cycles or hours accumulated per day). Most of this humidity collects on the fuselage skin as ice during cruise and thaws during descent. The time of wetness on long-range...
Abstract
This article describes the commonly observed forms of airplane corrosion, namely: general corrosion, exfoliation corrosion, pitting corrosion, microbiologically induced corrosion, galvanic corrosion, filiform corrosion, crevice corrosion, stress-corrosion cracking, and fretting. It discusses the factors influencing airplane corrosion from the manufacturing perspective: design, manufacturing, and service-related factors. The article explains the collection of corrosion data and provides an overview of the implementation and evolution of airline corrosion prevention and control programs and directions being considered in the design for corrosion prevention of airplanes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003477
EISBN: 978-1-62708-195-5
.... The horizontal stabilizer ( Fig. 17 ) has composite skins with aluminum honeycomb core. Fig. 17 F-16 composite horizontal stabilizer Another program that employed a considerable amount of composite material is the A-6 wing replacement program. In the A-6 program, high-flight-time metal wings were...
Abstract
This article provides information on the applications of fiber-reinforced composites in commercial and military aircrafts. It tabulates the composite components in various types of aircraft. The applications of the composites in the components of Boeing 727, 737, 757, 767, 777, and 777-200 are schematically illustrated.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006848
EISBN: 978-1-62708-387-4
... further that this FCG life represented the best estimate for the time available to detect cracking and a pressure loss in a blade, the conclusion was that this time was dangerously short. In fact, any estimate less than 3 FH, which represented the maximum normal flight duration, carried the implication...
Abstract
Quantitative fractography (QF) is the examination and characterization of fracture surfaces of failed or broken-open components and specimens. This article provides examples of the application of QF to evaluate real-life fatigue failures and also a comprehensive guideline chart for detecting and measuring fatigue striations and progression markings, with examples.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
... measurements of its travel time (time of flight, or TOF) over a known distance ( L , in meters): (Eq 1) E = 1 2 m n υ n 2 = h 2 2 m n λ 2 = m n L 2 2 T O F 2 ∼ k B T Or, rearranging to: (Eq 2) E ( meV...
Abstract
This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also presents application examples and possible future developments in neutron diffraction.
1