Skip Nav Destination
Close Modal
By
Curtis W. Hill, Yong Lin Kong, Hayley B. Katz, David H. Sabanosh, Majid Beidaghi ...
Search Results for
adv
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 443 Search Results for
adv
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Fig. 6 Steel substructure attached to composite tool laminate. Courtesy of The Advanced Composites Group, Inc.
More
Image
Published: 31 October 2011
Fig. 14 Finite-element modeling in ABAQUS showing the formation of voids on the advancing trailing side of the weld. Source: Ref 39
More
Image
Published: 01 January 2005
Fig. 4 Typical indicators of alkali-silica reactivity are map cracking and, in advanced cases, closed joints and attendant spalled concrete.
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003402
EISBN: 978-1-62708-195-5
Abstract
This article provides information on the classification of various composites manufacturing processes based on similar transport processes. The composites manufacturing processes can be grouped into three categories: short-fiber suspension methods, squeeze flow methods, and porous media methods. The article presents an overview of the modeling philosophy and approach that is useful in describing composite manufacturing processes.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006083
EISBN: 978-1-62708-175-7
... 2. Rutz H.G. and Hanejko F.G. , High Density Processing of High Performance Ferrous Materials , Adv. PM Part. , Vol 5 , 1994 , p 117 – 133 3. Miller T. and Hanejko F. , “Development of a Warm Compacted Automatic Transmission Torque Converter Hub,” Paper 970428...
Abstract
Warm compaction uses both powder heating and die heating to effect higher component densities, whereas warm die compaction uses only die heating to achieve higher density. This article explains the influences of green and sintered properties and pore-free density during compaction of materials. It provides information on the concept of pore-free density and process considerations: die heating and powder heating. The article concludes with a review of the tooling design for warm compaction.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006898
EISBN: 978-1-62708-392-8
.... J. Adv. Manuf. Technol. , Vol 40 , 2009 , p 116 10.1007/s00170-007-1308-1 7. Fan F.R. , Tian Z.Q. , and Wang Z.L. , Flexible Triboelectric Generator , Nano Energy , Vol 1 , 2012 , p 328 – 334 10.1016/j.nanoen.2012.01.004 8. Hwang B. , Lee J. , Trung...
Abstract
Additive manufacturing (AM) has been growing as a significant research interest in academic and industry research communities. This article presents flexible and biocompatible energy-harvesting devices using AM technology. First, it discusses material selection for achieving piezoelectricity and triboelectricity. Then, the article highlights the structures of energy harvesters and describes their working mechanisms. Next, it covers the additively manufactured implantable piezoelectric and triboelectric energy harvesters. Further, the article describes the 3D-printed wearable energy harvesters as well as their applications. An overview of additively manufactured self-powered sensors is highlighted. Finally, the article discusses the issues for 3D-printed energy harvesters and their roadmap.
Book Chapter
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006980
EISBN: 978-1-62708-439-0
.... References References 1. Simons M. , Additive Manufacturing—A Revolution in Progress? Insights from a Multiple Case Study , Int. J. Adv. Manuf. Technol. , Vol 96 (No. 1–4 ), 2018 , p 735 – 749 10.1007/s00170-018-1601-1 2. Herderick E.D. , Progress in Additive Manufacturing...
Abstract
Additive manufacturing (AM) has been adopted as one of the most versatile and rapid design-to-manufacturing approaches for printing a wide range of two- and three-dimensional parts, devices, and complex geometries layer by layer. This article provides insights into the current progress, challenges, and future needs of AM of electronics from the space, defense, biomedical, energy, and industry perspectives.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001464
EISBN: 978-1-62708-173-3
... Temperatures,” Belfour Stulen Division, Traverse City, MI, 1979 3. Horiuchi T. , Ogawa R. , and Shimada M. , Cryogenic Fe-Mn Austenitic Steels , Adv. Cryogenic Eng. (Mater.) , Vol 32 , 1985 4. Tobler R.L. , Siewert T.A. , and McHenry H.I. , Strength-Toughness...
Abstract
Cryogenic temperatures cause many structural alloys to become brittle, which is an unacceptable condition in most structural applications and is rectified by optimizing the weld composition. Although nonmatching weld compositions are most appropriate, differences between the welds and parent material in terms of thermal contraction, corrosion, and other factors must be considered. This article discusses these differences and describes the effect of these factors on the choice of the weld filler metal. It also provides a detailed discussion on the effects of cryogenic services on mechanical properties of the parent metal.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
.... , Inkjet Printing—Process and Its Applications , Adv. Mater. , Vol 22 ( No. 6 ), 2010 , p 673 – 685 10.1002/adma.200901141 24. Lin D. , Jin S. , Zhang F. , Wang C. , Wang Y. , Zhou C. , and Cheng G.J. , 3D Stereolithography Printing of Graphene Oxide...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001757
EISBN: 978-1-62708-178-8
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders or aggregates of finely divided material that readily diffract x-rays in specified patterns. This article provides an introduction to XRPD, beginning with a review of sensing devices, including pinhole/Laue cameras, Debye-Scherrer/Gandolfi cameras, Guinier cameras, glancing angle cameras, conventional diffractometers, thin film diffractometers, Guinier diffractometers, and micro diffractometers. The article then describes several quantitative measurement methods, such as lattice parameter, absorption diffraction, spiking, and direct comparison, explaining where each may be used. It also identifies potential sources of error in XRPD measurements.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006103
EISBN: 978-1-62708-175-7
Abstract
Machinability is more important in extending the applications of powder metallurgy (PM). This article provides an overview of the machining process and machinability measurement of PM steels. It discusses various approaches to improve machinability, including the closure of porosity, green machining, presintering, microcleanliness improvement, free-machining additives, microstructure modification, and improvements in tool materials. The effects of free-machining agents on machinability and the sintered properties of PM steels are also reviewed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006904
EISBN: 978-1-62708-392-8
... Embedding of Suspended Hydrogels , Sci. Adv. , Vol 1 ( No. 9 ), 2015 , p e1500758 10.1126/sciadv.1500758 15. Chimene D. , Peak C.W. , Gentry J. , Carrow J.K. , Cross L.M. , Mondragon E. , Cardoso G.B.C. , Kaunas R. , and Gaharwar A.K...
Abstract
The field of bioprinting is a subset of additive manufacturing (AM) that is rapidly expanding to meet the needs of regenerative medicine and tissue engineering. Bioprinting encompasses a broad spectrum of issues, from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. This article focuses on two challenges regarding bioprinting: bioinks and crosslinking. It describes the methods for characterizing the performance of bioink formulations and the effectiveness of crosslinking strategies. The topics covered include modalities of bioprinting, characteristics of bioink, rheological properties of bioink sols, rheological measurements, mathematical models of bioink rheology, postfabrication polymer network mechanics, mechanical properties of crosslinked bioinks, and printability of bioinks. Finally, specific strategies used for crosslinking bioinks, as well as some emerging strategies to further improve bioinks and their crosslinking, are summarized.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
Abstract
This article describes the fracture toughness behavior of austenitic stainless steels and their welds at ambient, elevated, and cryogenic temperatures. Minimum expected toughness values are provided for use in fracture mechanics evaluations. The article explains the effect of crack orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes with a discussion on the Charpy energy correlations for aged stainless steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006067
EISBN: 978-1-62708-175-7
... Stainless Steels , Adv. PM Part. , 1997 , p 9–3 to 9–17 5. Novak C.J. , Structure and Constitution of Wrought Austenitic Stainless Steels , Handbook of Stainless Steels , Peckner D. and Bernstein I.M. , Ed., McGraw-Hill Book Co. , New York , 1977 , p 4 – 10 6...
Abstract
Stainless steels are primarily alloys of iron and chromium. They are grouped into five families, primarily based on their microstructure: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Three out of the five families of stainless steels, namely, austenitic, ferritic, and martensitic, are well suited for manufacture via conventional powder metallurgy (PM) processes. This article presents the iron-chromium partial phase diagram to illustrate the changes in the temperature range when pure iron is alloyed with chromium. It describes AISI and UNS numbering systems, which are used as an identification system for stainless steels. The article tabulates the material designations of stainless steels in accordance with the Metal Powder Industries Federation. It also details the characteristics and chemical composition of wrought and PM stainless steels.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001111
EISBN: 978-1-62708-162-7
... , 1979 , p 349 6. Beasley M. , Adv. Cryo. Eng. , Vol 28 , 1981 , p 349 7. Welch D. , Adv. Cryo. Eng. , Vol 26 , 1980 , p 48 8. Ekin J. , Adv. Cryo. Eng. , Vol 30 , 1984 , p 823 9. Flükiger R. , Isernhagen R. , Goldacker W...
Abstract
This article reviews the phase diagrams, alloy with third element additions, layer growth, critical current density, and matrix materials of A15 superconductors. It describes the production methods of tape conductors (chloride deposition, and surface diffusion) and multifilamentary wires (rod process, modified jelly roll process, niobium tube process, in-situ process, powder metallurgy process, and jelly roll method). The article focuses on reaction heat treatment, which is required at the end of wire processing to convert the ductile components to the desired, but brittle, superconductor. Finally, it discusses the applications of A15 superconductors in commercial magnets, power generation, power transmission, high-energy physics, and fusion.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006907
EISBN: 978-1-62708-392-8
.... Patel S.K. , Khoder M. , Peak M. , and Alhnan M.A. , Adv. Drug Deliv. Rev. , Vol 174 , July 2021 , p 369 – 386 10.1016/j.addr.2021.04.020 2. Awad A. , Trenfield S.J. , Goyanes A. , Gaisford S. , and Basit A.W. , Drug Discov. Today , Vol 23...
Abstract
Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because of critical design parameters including chemical composition, flowability of powders, and melt surface tension. This article explains the fabrication methods of metal and novel alloy powders for medical applications. The development of zirconium alloy powder for laser-PBF is introduced as a case study.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006119
EISBN: 978-1-62708-175-7
.... , Nadkarni A.V. , and Cowan G.L. , Sinter-Brazing of PM Components with Sinter-Braze Pastes , Adv. PM Part. , MPIF , 2006 , p 6.40 – 6.49 7. Davis J.R. , Ed., Welding , Stainless Steels , ASM Specialty Handbook , ASM International , 1994 , p 340 – 401 8. Welding, Brazing...
Abstract
Powder metallurgy (PM) stainless steels, as with conventional PM steels, are often used in the as-sintered condition. In addition to cost considerations, minimization of postsinter handling and secondary operations is also preferred because it reduces the potential for contamination of the parts with particulates and residues, which can result in the appearance of surface rust. This article provides information on various secondary operations, including tumbling, re-pressing, resin impregnation, annealing or heat treating, brazing, machining, and welding. It describes those aspects relating to welding of PM stainless steels, specifically, the effects of density, residual porosity, and sintered chemistry on weldability. Further, the article investigates the influence the sintering atmosphere has on machinability, as well as differences created by the presence of residual porosity.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001112
EISBN: 978-1-62708-162-7
.... , Guertin R.P. , Foner S. , Hinks D.G. , and Li H.C. , Phys. Rev. B , Vol 29 ( No. 11 ), 1984 , p 6375 10.1103/PhysRevB.29.6375 21. Goldacker W. , Miraglia S. , Hariharan Y. , Wolff T. , and Flükiger R. , Adv. Cryog. Eng. , Vol 34 , 1988 , p 655...
Abstract
Ternary molybdenum chalcogenides stands for a vast class of materials, whose general formula is MxMO6X8, where, M is a cation and X is a chalcogen (sulfur, selenium, or tellurium). Possible applications of some of these are as high field superconductors (that is, >20 T, or 200 kG). This article discusses the fabrication methods of PbMo6S8 (PMS) and SnMo6S8 (SMS), including hot processing and cold processing. It provides a short note on the superconducting properties of PMS wire filaments and their applications in processes requiring high magnetic fields, such as high-energy physics, thermonuclear fusion, and nuclear magnetic resonance.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006862
EISBN: 978-1-62708-392-8
Abstract
The article presents an in-depth discussion on the various additive manufacturing techniques such as binder jetting, directed-energy deposition, material extrusion, material jetting, powder-bed fusion, sheet lamination, and vat polymerization processes. This article then discusses the different critical material aspects of additively manufactured medical devices, beginning with the preprinting phase (material consistency and recycling), the printing phase (build orientation), and the postprinting phase (part evaluation, biocompatibility, and sterilization) with supporting materials.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006562
EISBN: 978-1-62708-290-7
Abstract
This article is a review of the material extrusion-based ceramic additive manufacturing (MECAM) processes. The discussion begins with details of extrusion with filament and paste, covering the most popular variants of paste extrusion-based MECAM techniques that can be differentiated based on paste type and the method of shape retention of the deposited layer: extrusion freeforming, robocasting ceramic on-demand extrusion, and freeze-form extrusion fabrication. The article then focuses on post-processing considerations and the mechanical properties of sintered ceramic parts. It concludes with information on innovation opportunities in ceramic additive manufacturing, such as incorporating UV-curing and gelation in the process and producing geometrically complex structures from shapeable green bodies.
1