Skip Nav Destination
Close Modal
By
Ray Dixon, S.P. Chen
By
Witold Lojkowski, Hans J. Fecht
By
W. Merlijn van Spengen, H.R. Fischer
By
Kazuhisa Miyoshi, Phillip B. Abel
By
Donald M. Mattox
Search Results for
adhesion energy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 790
Search Results for adhesion energy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Adhesion and surface energy of contacting materials: atomically clean diamo...
Available to Purchase
in Adhesion, Friction, and Wear in Low-Pressure and Vacuum Environments
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 4 Adhesion and surface energy of contacting materials: atomically clean diamond, atomically clean sapphire, diamond with adsorbed species, and sapphire with adsorbed species in contact with atomically clean aluminum in ultrahigh vacuum (10 −8 Pa). Δγ: the surface energy difference
More
Book Chapter
Fundamentals of Metal and Metal-to-Ceramic Adhesion
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001348
EISBN: 978-1-62708-173-3
... based on theoretical analysis. A discussion on the properties affecting adhesion is also provided. adhesion adhesion energy bonding grain boundary energy interfacial characterization interfacial energy mechanical properties metal adhesion metal-to-ceramic adhesion solid-state welding...
Abstract
This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties of interfaces based on theoretical analysis. A discussion on the properties affecting adhesion is also provided.
Book Chapter
Adhesion Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003280
EISBN: 978-1-62708-176-4
... liquid films ( Ref 15 , 16 ), and the friction between two molecularly smooth solids ( Ref 17 ). Thermodynamic Adhesion Thermodynamic adhesion refers to the change in free energy when an interface is formed or separated. This concept of adhesion is defined in terms of surface energy, interfacial...
Abstract
This article describes measurement techniques for the three basic types of adhesion: fundamental adhesion, thermodynamic adhesion, and practical adhesion. It discusses common measurement methods for each type of adhesion with the main focus on practical adhesion testing of coatings and thin films. The article provides an insight into the mechanisms of environmentally induced interfacial degradation by discussing the fundamental aspects of adhesion between two dissimilar materials. It examines the use of adhesion tests in the evaluation of stress-corrosion cracking within bimaterial interfaces. Testing techniques for <i>in situ</i> environmental testing of thin-film adhesion are also reviewed.
Book Chapter
Localization Parameter for the Prediction of Interface Structures and Reactions
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005412
EISBN: 978-1-62708-196-2
... that the SUs model well describes the interface structure. For such interfaces, one may expect high adhesion between the two crystals and the presence of sharp energy minima for LEORs ( Ref 2 ). The principal question is: Under what conditions is this model of the interface structure applicable at all...
Abstract
This article summarizes a physical model of an interface structure and shows how the model helps in optimizing atomistic modeling studies. It presents the orientation relationship of the interface structure to define the mutual crystallographic position of adjacent crystals. The article describes the model-informed atomistic modeling of the interface structures for interpolating the results of atomistic modeling to predict the properties of interfaces. Theories to predict low-energy orientation relationships are described. The article discusses the use of the localization parameter, such as shear modulus, bonding energy, and transformations, for prediction of interface structures. It provides information on the application of the atomistic modeling of interface structure to predict interface reaction mechanisms.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003374
EISBN: 978-1-62708-195-5
... Abstract Fiber-matrix adhesion is a variable to be optimized in order to get the best properties and performance in composite materials. This article schematically illustrates fiber matrix interphase for composite materials. It discusses thermodynamics of interphase in terms of surface energy...
Abstract
Fiber-matrix adhesion is a variable to be optimized in order to get the best properties and performance in composite materials. This article schematically illustrates fiber matrix interphase for composite materials. It discusses thermodynamics of interphase in terms of surface energy, contact angle, work of adhesion, solid surface energy, and wetting and wicking. The article describes the change in interphase depending on the reinforcing fiber such as glass fiber, polymeric fiber, and carbon fiber. It emphasizes fiber-matrix adhesion measurements by direct methods, indirect methods, and composite laminate tests. The effects of interphase and fiber-matrix adhesion on composite mechanical properties, such as composite on-axis properties, composite off-axis properties, and composite fracture properties, are also discussed.
Image
The work of adhesion and factors decreasing adhesion. (a) Bonded interface....
Available to Purchase
in Localization Parameter for the Prediction of Interface Structures and Reactions
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 13 The work of adhesion and factors decreasing adhesion. (a) Bonded interface. (b) Cleaved interface and dangling bonds. (c) Decrease of free surface energy and adhesion due to chemical reactions at the surfaces. (d) Decrease of free surface energy and adhesion due to segregation
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003324
EISBN: 978-1-62708-176-4
... of fracture mechanics (see the section “Adhesive Fracture Mechanics Tests” in this article) to obtain critical information and insight into the behavior of adhesive joints ( Ref 12 , 13 ). The peel specimen is, in principle, a very versatile geometry for obtaining adhesive fracture energy because various...
Abstract
Adhesive joints involve joining parts by bonding component parts together with an adhesive. This article provides a discussion on the purpose of testing adhesive joints and on the factors influencing mechanical strength of these joints. It describes the various tests used in the measurement of adhesive joint strength. These include qualitative tests, peel tests, lap shear tests, tensile tests, and adhesive fracture mechanics tests.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005672
EISBN: 978-1-62708-198-6
... (UV) light, visible light, gamma, or electron beam. The reaction is usually a free-radical addition type. A photo initiator is usually present in the adhesive formulation to absorb the irradiation energy and generate free radicals, which are highly reactive species. Irradiation-cured adhesives include...
Abstract
This article provides an overview of curing techniques, adhesive chemistries, surface preparation, adhesive selection, and medical applications of adhesives. The curing techniques are classified into moisture, irradiation, heat, and anaerobic. The article highlights the common types of curable adhesives used for medical device assemblies, including acrylics, cyanoacrylates, epoxies, urethanes, and silicones. Other forms of adhesives, such as hot melts, bioadhesives, and pressure-sensitive adhesives, are also discussed. The typical characteristics and applications of biocompatible medical device adhesives are listed in a table. The article concludes with a section on the selection of materials for medical adhesives.
Book Chapter
Measurement of Surface Forces and Adhesion
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006379
EISBN: 978-1-62708-192-4
... Work of Adhesion A thought experiment has been used to define the work of cohesion of a solid as twice the surface energy (because two surfaces are created) or interfacial energy, as appropriate. If a similar experiment were done in which two different materials were separated from contact...
Abstract
This article first describes surface forces, and the methods of measuring them, followed by a discussion on adhesion. It discusses the instrumental requirements and techniques, including Atomic Force Microscopy (AFM), used for the measurement of surface forces. Measurements of surface roughness, with AFM, can provide a precise picture of surface roughness and can be used as input for contact mechanics computer models. The article also describes microscale adhesion and adhesion measurement methods using microelectromechanical systems technologies. It reviews certain considerations used for the measurement of adhesion, such as fundamental adhesion measurements, history dependence and sample preparation, and practical adhesion measurements. The article describes various arrangements that can be employed in adhesion tests.
Book Chapter
Adhesion, Friction, and Wear in Low-Pressure and Vacuum Environments
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006375
EISBN: 978-1-62708-192-4
... and surface energy ( Ref 33 ) by a factor of 22 with an aluminum-diamond couple and by a factor of 13 with an aluminum-sapphire couple. Thus, contamination is an important factor in determining such solid surface properties as adhesion in vacuum environments. Contaminant layers can greatly reduce adhesion...
Abstract
This article discusses the adhesion behavior of materials in low-pressure and vacuum environments and provides a schematic illustration of an apparatus for measuring adhesion and friction in ultrahigh vacuum. It describes the effects of low-oxygen pressures and vacuum environments on adhesion and friction, as well as the effects of defined exposure to oxygen on friction. The article discusses the wear of various metals in contact with ceramics, and alloying element effects on friction, wear, and transfer of materials. It also describes studies that characterize the contributions of surface contamination and chemical changes to tribology in low-pressure and vacuum environments.
Image
Schematic illustration of the various mechanisms that can lead to adhesion ...
Available to PurchasePublished: 31 October 2011
Fig. 6 Schematic illustration of the various mechanisms that can lead to adhesion during adhesive bonding, that is, (a) mechanical interlocking of adhesive into microscopic surface asperities, (b) secondary bonding from adsorption with proper wetting from surface energy effects, (c
More
Book Chapter
Growth and Growth-Related Properties of Films Formed by Physical Vapor Deposition
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001286
EISBN: 978-1-62708-170-2
... 2 on Fe 3.0 Ni on Mo 2.1 Ag on Mo 1.5 Au on W 3.0 O 2 on Mo 7.5 Note: 1 eV/atom = 23 kcal/mole. Source: Ref 8 The bonding between a metal atom and an oxide surface is proportional to the metal-oxygen free energy of formation, with the best adhesion produced...
Abstract
This article describes eight stages of the atomistic film growth: vaporization of the material, transport of the material to the substrate, condensation and nucleation of the atoms, nuclei growth, interface formation, film growth, changes in structure during the deposition, and postdeposition changes. It also discusses the effects and causes of growth-related properties of films deposited by physical vapor deposition processes, including residual film stress, density, and adhesion.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001319
EISBN: 978-1-62708-170-2
... that is merely resting on the surface. In addition, increasing the surface energy of the substrate above the surface tension of the adhesive makes it possible for the adhesive to wet the entire surface of the polymer substrate. The increase in the apparent surface area of contact increases the strength...
Abstract
This article provides an overview of plasma surface treatments for plastics. It covers the equipment and methods used in plasma processing, providing detailed explanations of the plasma discharge reactions and how they affect surface state and topography. It also provides information on contamination removal, plasma surface modification, plasma-induced grafting, and plasma film deposition.
Image
Scanning electron microscopy micrographs of wear mechanisms and the appeara...
Available to PurchasePublished: 31 December 2017
by indenting hard asperities of contacting bodies or hard particles (microcutting, microplowing, microcracking). (c) Adhesion. Formation and rupture of adhesive interfacial cold weld spots, materials transfer, and generation of wear debris. (d) Tribochemical reaction. Chemical materials/atmosphere/lubricant
More
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003375
EISBN: 978-1-62708-195-5
... honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density...
Abstract
Lightweight structural cores are used on aircrafts to reduce weight and increase payload and fight distance. This article discusses the classification of lightweight structural cores, namely, honeycomb, balsa, and foam. It reviews the four primary manufacturing methods used to produce honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density, mechanical properties, environmental compatibility, formability, durability, and thermal behavior. The article provides information on the benefits and concepts of a sandwich panel containing lightweight structural cores.
Image
Evolution of fretting wear rate increase with applied sliding amplitude for...
Available to PurchasePublished: 15 January 2021
Fig. 19 Evolution of fretting wear rate increase with applied sliding amplitude for an adhesive wear Ti-6Al-4V interface. (a) Basic friction energy approach. (b) Extended friction energy approach (results normalized versus a reference test condition: α n = α/α ref ; δ S,n = δ S /δ S,ref
More
Book Chapter
Joining and Assembly of Polymer-Matrix Composites
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... no solvents, chemical fumes, disposal problems, or heat that could harm the plastic surface. The plasma reacts to a depth of 0.01 to 0.1 μm ( Ref 8 ). The effect of plasma treatment is to reduce the contact angle (a function of surface energy) of the surface to which adhesive will be applied. This reduction...
Abstract
The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the applications of adhesive bonding. It discusses the types of adhesives, namely, epoxy adhesives, epoxy-phenolic adhesives, condensation-reaction PI adhesives, addition-reaction PI adhesives, bismaleimide adhesives, and structural adhesives. The article provides information on fastener selection considerations, including corrosion compatibility, fastener materials and strength, head configurations, importance of clamp-up, interference fit fasteners, lightning strike protection, blind fastening, and sensitivity to hole quality. Types of fusion bonding are presented, namely, thermal welding, friction welding, electromagnetic welding, and polymer-coated material welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005607
EISBN: 978-1-62708-174-0
... Abstract Ultrasonic metal welding is a solid-state welding process that produces coalescence through the simultaneous application of localized high-frequency vibratory energy and moderate clamping forces. This article discusses the parameters to be considered when selecting a suitable welder...
Abstract
Ultrasonic metal welding is a solid-state welding process that produces coalescence through the simultaneous application of localized high-frequency vibratory energy and moderate clamping forces. This article discusses the parameters to be considered when selecting a suitable welder for ultrasonic metal welding. It details the personnel requirements, advantages, limitations, and applications, namely, wire welds, spot welds, continuous seam welds, and microelectronic welds of ultrasonic metal welding.
Book Chapter
Joining and Assembly of Plastics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003021
EISBN: 978-1-62708-200-6
... factors: the chemical nature of the polymer, the surface free energy, the surface topography, and contamination of the polymer surface by dust, oil, and grease. These factors markedly affect the effectiveness of the adhesive and solvent bonding methods. Fusion welding, however, is much more tolerant...
Abstract
This article discusses the classification of the attachment and joining methods in plastics, including mechanical fastening, adhesive bonding, solvent bonding, and welding. It describes the mechanical fastening techniques used to join both similar and dissimilar materials with machine screws or bolts, nuts and washers, molded-in threads, self-threading screws, rivets, spring-steel fasteners, press fits, and snap fits. The article explains solvent bonding used for thermoplastic parts, and tabulates the solvent types used with various plastics. It also describes the surface preparation of plastics, chemical treatment for adhesion, and tabulates the adhesive types for bonding plastics to plastics and plastics to nonplastics. The article briefly describes the welding processes of thermoplastics, including fusion welding (hot-tool, hot gas, extrusion, and focused infrared), friction welding (vibration, spin, and ultrasonic), and electromagnetic welding (resistance, induction, dielectric, and microwave). It concludes with the evaluation of welds using destructive and nondestructive testing.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005551
EISBN: 978-1-62708-174-0
... with proper wetting from surface energy effects, (c) electrostatic attraction from charge separation or polarization, and (d) diffusion of some atoms or molecules back and forth between adhesive and adherends. Also, (e) the formation of a weak boundary layer that can lead to the adhesive failure of joints...
Abstract
Joining is key to the manufacture of large or complex devices or assemblies; construction of large and complex structures; and repair of parts, assemblies, or structures in service. This article describes the three forces for joining: physical, chemical, and mechanical. It provides an overview of the joining processes, namely, mechanical fastening, integral attachment, adhesive bonding, welding, brazing, and soldering. The article concludes with information on the various aspects of joint design and location that determine the selection of a suitable joining method.
1