Skip Nav Destination
Close Modal
Search Results for
adaptive segmentation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 323 Search Results for
adaptive segmentation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 39 Adaptive segmentation of the same image as Fig. 38 (a) Adaptive Otsu segmentation with 5 × 5 subimages, without interpolation. (b) Adaptive Otsu segmentation with 5 × 5 subimages, with interpolation
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
... and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies...
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
Image
Published: 01 December 2004
Fig. 51 Discrimination of intragrain and grain-boundary precipitates. (a) Original image (SEM, BSE, 512 × 480). (b) After median filter to reduce noise and adaptive segmentation to reveal the precipitates. (c) After dilation, scrap, and logical AND to eliminate “lonely” precipitates. (d
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001470
EISBN: 978-1-62708-173-3
... Abstract Efforts in improving the efficiency of automated equipment lead to combining automatic joining equipment with a modem computer technique eventually known as artificial intelligence (intelligent automation) that usually includes an off-line planning system and a real-time adaptive...
Abstract
Efforts in improving the efficiency of automated equipment lead to combining automatic joining equipment with a modem computer technique eventually known as artificial intelligence (intelligent automation) that usually includes an off-line planning system and a real-time adaptive control system connected through a computer communications interface. This article focuses on the application of intelligent automation system to arc welding, called WELDEXCELL, and other joining processes. An outline of the interface between off-line planners and real-time control systems is also provided.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002174
EISBN: 978-1-62708-188-7
... for programming the tools with the aid of the automatically programmed tool language. It also explains point-to-point and continuous-path or contouring of NC systems and the adaptive systems used for NC. adaptive systems computer numerical control direct numerical control machine tools numerical control...
Abstract
This article discusses the evolution of computer numerical control and direct numerical control for machine tools. It describes the fundamentals and advantages of numerical control (NC) systems. The article reviews the manual or computer assisted off-line programming methods for programming the tools with the aid of the automatically programmed tool language. It also explains point-to-point and continuous-path or contouring of NC systems and the adaptive systems used for NC.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002172
EISBN: 978-1-62708-188-7
... will form continuous chips or segmented shear-localized chips, one way of defining high-speed machining is to relate it to the chip formation process (see the section “Mechanics of Chip Formation” in this article). Localized shear occurs when the negative effect on strength of increasing temperature due...
Abstract
This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article describes the cutting tool systems for aluminum alloys, steel, superalloys, and titanium alloys and provides an overview of the alternative cutting tool geometries for increasing tool life. It highlights the factors considered by companies planning to employ high-speed machining systems and concludes with information on the applications of high-speed machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002155
EISBN: 978-1-62708-188-7
... Methods Primarily because of rapid increases in the sales of wire electrical discharge machining and laser equipment, thermal processes have become the fastest-growing segment of the nontraditional market. Given the diversity of energy sources used in this category (electrons, photons, electrical...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005122
EISBN: 978-1-62708-186-3
... forming can be segmented or contoured to apply equal stretch to all parts of the sheet as it is formed. The vertical adapter shown in Fig. 5 is used with a rotary table; it is fastened to the hydraulic cylinder used for applying tension to the blank. The adapter allows wiper shoes, rollers, and grippers...
Abstract
Stretch forming is the forming of sheet, bars, and rolled or extruded sections over a die or form block of the required shape while the workpiece is held in tension. This article discusses the applicability, advantages, and machines and accessories of stretch forming. It provides a detailed discussion on four methods of stretch forming, namely, stretch draw forming, stretch wrapping, compression forming, and radial draw forming.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... adaptable coil current frequency enabled a converter-fed crucible furnace with the same capacity to be operated at approximately three times the furnace power consumption and without heel, without lowering melting performance. In the case of channel furnaces, the furnace power levels able...
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005260
EISBN: 978-1-62708-187-0
... in.) in diameter were produced from alloy AZ92A (UNS M11920) in a two-segment permanent mold with vertical parting. Copper Casting Alloys Copper casting alloys from the silicon bronze, aluminum bronze, and high-copper families are often cast in permanent molds. Alloys with a narrow solidification range...
Abstract
This article provides information on metals that can be cast in permanent molds. It describes the advantages, disadvantages, applications, and design of permanent castings. Following a discussion on the factors considered in mold design and material selection, the article details the application of mold coatings and examines the effects of major processing variables on mold life. The variables that determine mold temperature and measures for controlling it are reviewed, and the effects of short-term and long-term variables on the dimensional accuracy of permanent mold castings are explained. The article concludes with a discussion on the factors influencing the surface finish on permanent mold castings.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005793
EISBN: 978-1-62708-165-8
... low-pressure carburizing processes are possible. Because the carbon transfer in plasma carburizing processes is approximately as high as in a low-pressure carburizing process with acetylene as process gas, the process must be divided into carburizing and diffusing segments. The length...
Abstract
The plasma carburizing process is basically a low-pressure carburizing process making use of a high-voltage electrical field applied between the load to be treated and the furnace wall producing activated and ionized gas species responsible for carbon transfer to the workpieces. This article begins with an overview of the theoretical background and the range and limitations of glow-discharge plasma. It describes the plasma carburizing process, which is carried out with methane or propane. Plasma carburizing processes of sinter metals and stainless steels, and the influence of current pulse length on carbon input of low-pressure carburizing process are also described. The article presents the basic requirements and process parameters to be considered in plasma carburizing equipment. It also exemplifies a still-working plasma process in industrial measure.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006564
EISBN: 978-1-62708-290-7
... image is cropped to a region including a particular part. The cropped images are normalized to enhance the contrast of the gray scales by transforming the values using contrast-limited adaptive histogram equalization ( Fig. 4 ). In each normalized image, the part is segmented from the unfused powder...
Abstract
This article covers in-line process monitoring of the metal additive manufacturing (AM) methods of laser and electron beam (e-beam) powder-bed fusion (PBF) and directed-energy deposition (DED). It focuses on methods that monitor the component directly throughout the build process. This article is organized by the type of AM process and by the physics of the monitoring method. The discussion covers two types of monitoring possible with the PBF process: monitoring the area of the powder bed and component and monitoring the melt pool created by the laser or e-beam. Methods for layer monitoring include optical and thermal methods that monitor light reflected or emitted in the visible and infrared wavelengths, respectively. Monitoring methods for laser directed-energy deposition (DED) discussed are those that measure the size and shape of the melt pool, the temperature of the melt pool, and the plasma generated by the laser as it interacts with the molten metal.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006852
EISBN: 978-1-62708-392-8
... X X X … “X” denotes the capabilities of the software in question. Adapted from Ref 8 Conversion of Digital Imaging and Communications in Medicine to Standard Tessellation Language After segmentation, the ROI is converted to a file that can be recognized by the printer, the most...
Abstract
This article provides highlights of the general process and workflow of creating a 3D-printed model from a medical image and discusses the applications of additively manufactured materials. It provides a brief background on Food and Drug Administration (FDA) classification and regulation of medical devices, with an emphasis on 3D-printed devices. Then, the article discusses two broad applications of 3D printing in craniofacial surgery: surgery and education. Next, it discusses, with respect to surgical applications, preoperative planning, use in the operating room, surgical guides, and implants. The article includes sections on education that focus on the use of 3D-printed surgical simulators and other tools to teach medical students and residents. It briefly touches on the FDA regulations associated with the respective application of 3D printing in medicine. Lastly, the article briefly discusses the state of medical billing and reimbursement for this service.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003758
EISBN: 978-1-62708-177-1
... stereological interpretation. As a consequence, one can easily adapt numerous stereological methods to the needs of automatic image analysis, as is shown by the examples in this article. In order to perform any measurements, the image has to be binarized, that is, transformed into binary form, which...
Abstract
This article reviews the essential parts of the complex process of quantitative image analysis to assist automatic image analysis in laboratories. It describes the basic difference between the bias of classical manual stereological analysis and quantitative image analysis. The article concentrates on the basic properties of digital measurements that are the core of quantitative image analysis. It provides a brief description of the specimen and apparatus preparation as well as the image acquisition. The article explains how to evaluate stereological parameters and provides the general rules and guidelines for optimization of image processing algorithms from the viewpoint of shape quantification. It concludes with examples that demonstrate the usefulness of automatic image analysis in comparison to manual methods.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005900
EISBN: 978-1-62708-167-2
... induction vacuum-melting furnaces. Coil Design of Induction Vacuum Furnaces The requirements for the design and performance of an induction coil working under vacuum and inert gas conditions are different from those for standard air induction furnaces. The design of the induction coil must be adapted...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005504
EISBN: 978-1-62708-197-9
... input and used in the simulations. Three-Dimensional Characterization Methods The article by Kral et al. ( Ref 1 ) provides a detailed review of 3-D microscopy, from which much of this section is adapted, with additions where necessary to update certain advances in techniques and algorithms since...
Abstract
This article reviews the characterization methods for producing 3-D microstructural data sets. The methods include serial sectioning by mechanical material removal method and focused ion beam tomography method. The article describes how these data sets are used in realistic 3-D simulations of microstructural evolution during materials processing and materials response. It also explains how the 3-D experimental data are actually input and used in the simulations using phase-field modeling and finite-element modeling.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
...) and bcc materials (0.005 to 45 at.%). The nature of the model allows a first approximation of the temperature dependencies of solid-solution strengthening. The model is derived by considering the work required to move an edge dislocation from one linear segment of pinning solutes to the next linear...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006439
EISBN: 978-1-62708-190-0
... one in order to further process the image. Binary image: A binary image represents the image content with either values of 0 or values of 1. Techniques to create a binary image are thresholding or adaptive thresholding: assuming the image channel is represented in a range between 0 to 255, one...
Abstract
Machine vision, also referred to as computer vision or intelligent vision, is a means of simulating the image recognition and analysis capabilities of the human eye and brain system with digital techniques. The machine vision functionality is extremely useful in inspection, supervision, and quality control applications. This article presents a variety of machine vision functions for different purposes and provides a comparison of machine and human vision capabilities in a table. It discusses the processes of a machine vision system: image acquisition, image preprocessing, image analysis, and image interpretation. The article provides information on the uses of machine vision systems in three categories of manufacturing applications: visual inspection, identification of parts, and guidance and control applications.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006568
EISBN: 978-1-62708-290-7
..., Visualization, and Segmentation of Porosity In XCT, the projection at each angle is the Radon transform of the object along the projection line. The Radon transform, R , named after Johann Radon, is an important concept in tomography reconstruction, because it describes how to map an object onto...
Abstract
Powder-bed additive manufacturing (AM) processes are some of the most commonly used techniques, necessitating the accurate measurement of powder flowability properties. This article discusses some powder flow tests that occur in powder-bed AM machines. These include the Hall/Carney flow test, bulk/tap density, rheometer, and the revolving or rotating drum technique. The three categories of powder properties that are available from rheometer experiments are discussed: bulk, dynamic flow, and shear properties. The article also describes the basic principles and applications of micro-X-ray computed tomography in studying powder porosity characteristics nondestructively.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001727
EISBN: 978-1-62708-178-8
..., the material is divided into a number of real or imaginary segments. For example, a bin of raw material can be conceptually subdivided horizontally and vertically into cells. Each segment is then assigned a number. Segments from which sample increments will come are selected by starting in an arbitrary place...
Abstract
This article primarily considers the problem of sampling bulk materials, including minerals, metals, environmentally important substances, and industrial raw materials and waste products. It provides useful information on sample types, sampling plan, optimizing sampling resources, practical aspects of sampling, and how to ensure the quality of sampling.
1