1-20 of 342

Search Results for activated liquid-phase sintering

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 30 September 2015
Fig. 38 Relative density versus sintering temperature for activated solid-state and activated liquid-phase sintering of tungsten. Nickel is most effective as a pure activator, but when liquid copper is present, the nickel effectiveness is diluted by solubility in the liquid. Alternatively More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
...-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering. activated liquid-phase sintering activated sintering computer simulation...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006110
EISBN: 978-1-62708-175-7
..., development of liquid phase, and ability to sinter active elements in alloy steels. The article also provides information on three sources of process control requirements, namely, the powder blend, green density, and sintering conditions. alloy steels ferrous components high-temperature sintering...
Image
Published: 30 September 2015
Fig. 37 Idealized binary phase diagram for solid-state activated sintering. The mixture has a composition in a two-phase region at the sintering temperature. The activator A is nearly insoluble in the base B, but B is highly soluble in A. The phase diagram is rather similar More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006069
EISBN: 978-1-62708-175-7
... during liquid-phase sintering. Fig. 3 Typical time-temperature cycle for vacuum sintering of cemented carbide. Source: Ref 7 Carbon activity and oxygen partial pressure must be controlled during vacuum sintering to maintain a reducing atmosphere and high carbon activity to prevent...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006135
EISBN: 978-1-62708-175-7
... can be divided into two zones: transient liquid phase sintering and final solid state sintering. Transient Liquid Phase Sintering As soon as the part reaches a temperature of 1082 °C (1983 °F), copper begins to melt and starts spreading to the neighboring particle surfaces and penetrating...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003789
EISBN: 978-1-62708-177-1
... equipment and techniques and provides data on etchants and etching procedures. specimen grinding liquid-phase sintering macroexamination metallographic examination microstructure particle size analysis powder metallurgy alloys particle shape analysis specimen polishing specimen preparation...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003056
EISBN: 978-1-62708-200-6
... the interface to a high enough temperature to provide sufficient activation energy for the chemical bonds to form. At the sealing temperatures, however, one of the phases frequently will form a liquid, either by melting or through a reaction. The advantage of a liquid is that an intimate interface can...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006125
EISBN: 978-1-62708-175-7
... Abstract The residual porosity in sintered refractory metal ingots is usually eliminated by different densification processes, such as thermomechanical processes. This article focuses on thermomechanical processing of tungsten, molybdenum, and tantalum. It provides an overview of liquid-phase...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006106
EISBN: 978-1-62708-175-7
...., 94Cu/6Sn + 4Sn) has less liquid phase during sintering, which accounts for a comparatively lower sintered strength at similar green density. However, the partially prealloyed bronze approach minimizes the risk of segregation and still maintains acceptable sintered strength. Fully prealloyed bronze...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006132
EISBN: 978-1-62708-175-7
... additions of tin, lead, indium, bismuth, and antimony intensify sintering in the Al-Cu-Mg alloy system ( Ref 19 , 20 ). Densification and chemical homogenization are also important. These transitions within the compact are driven by the presence of a liquid phase that can be of a transient...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001457
EISBN: 978-1-62708-173-3
... through a liquid phase (not by surface diffusion) that is formed by the reaction of metal-oxide sintering aids and the silicon dioxide that coats each of the silicon nitride grains. In most cases, at least some residue of the sintering aid remains at the grain boundaries after the ceramic densities...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.9781627081832
EISBN: 978-1-62708-183-2
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 31 January 2025
DOI: 10.31399/asm.hb.v13b.a0007042
EISBN: 978-1-62708-183-2
... as for refractories), with very little batch-to-batch variability and as little as possible liquid-solid sintering. Those technical ceramics do possess a fired density as close as possible to theoretical density (with small pores and very little apparent porosity—a major difference when compared to refractories...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... of slags (of the same nature as the liquid phase formed in the refractories). The early book by Muan and Osborn ( Ref 2 ) is a reading requirement for new researchers in this field, as are the reviews by Kraner ( Ref 3 ) on phase diagrams for fired refractories and by Alper et al. ( Ref 4 ), on fusion-cast...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006141
EISBN: 978-1-62708-175-7
..., debinding techniques, consolidation (sintering) techniques, advantages, and limitations of MIM. binders debinding fabrication feedstock properties fixtures furnaces liquid phase sintering metal powder injection molding metal powder injection molding machines molding defects powders pressure...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001105
EISBN: 978-1-62708-162-7
... if limited. Mold design must accommodate the radial and axial shrinkage caused by hydrostatic pressing as well as the shrinkage that occurs during subsequent sintering Surfaces of compacts are less smooth than those of die-pressed pieces A high liquid-phase sintering step or encapsulation is necessary...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003795
EISBN: 978-1-62708-177-1
... of a ceramic sealing disk with a typical residual porosity of 3 to 4%, a bimodal grain size distribution, and a glassy phase at the grain boundaries (liquid-phase sintering) is given in Fig. 12 . Figure 13 shows the microstructure of a spark plug with anisotropic grains, a glassy grain-boundary phase...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002490
EISBN: 978-1-62708-194-8
... or good forming properties. The material is then formed by one of three general approaches with decreasing liquid phase (water) content: wet (casting, tape casting), plastic (extrusion, plastic pressing, jiggering, injection molding), or dry (dry pressing, isostatic pressing). The shaped object...