Skip Nav Destination
Close Modal
By
David B. Chalk
By
Mohammed Maniruzzaman, Xiaolan Wang, Richard D. Sisson, Jr.
By
John A. Shields, Jr.
By
Bert Moniz, Jack W. Horvath
Search Results for
acid cleaning
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 897
Search Results for acid cleaning
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001227
EISBN: 978-1-62708-170-2
... Abstract This article focuses on the mineral and organic acid cleaning of iron and steel. It begins with a discussion on the application methods, process selection criteria, solution composition, equipment used, and control of process variables in mineral acid cleaning. The article...
Abstract
This article focuses on the mineral and organic acid cleaning of iron and steel. It begins with a discussion on the application methods, process selection criteria, solution composition, equipment used, and control of process variables in mineral acid cleaning. The article then describes the advantages and disadvantages of organic acid cleaning. Applications, including boiler cleaning, stainless steel cleaning, and removal of iron- and copper-bearing deposits, are discussed. The article concludes with an overview of acid cleaning of nonferrous alloys.
Image
Section of an acid cleaning tank. Inner lining of brick acts only as a ther...
Available to PurchasePublished: 01 January 1994
Fig. 1 Section of an acid cleaning tank. Inner lining of brick acts only as a thermal shield and as a protection against mechanical damage to the corrosion-resistant polyvinyl chloride or rubber membrane.
More
Image
Section of an acid cleaning tank. Inner lining of brick acts only as a ther...
Available to PurchasePublished: 01 December 1998
Fig. 6 Section of an acid cleaning tank. Inner lining of brick acts only as a thermal shield and as a protection against mechanical damage to the corrosion-resistant polyvinyl chloride or rubber membrane.
More
Image
Effect of abrasive cleaning and acid etching on the lap shear strength of A...
Available to PurchasePublished: 01 January 1993
Fig. 15 Effect of abrasive cleaning and acid etching on the lap shear strength of AS4/APC-2 laminates. Source: Ref 15
More
Image
Effect of abrasive cleaning and acid etching on fusion-bonded AS4-APC-2 lam...
Available to PurchasePublished: 01 January 1993
Fig. 16 Effect of abrasive cleaning and acid etching on fusion-bonded AS4-APC-2 laminates. Test coupons were joined by ultrasonic welding. Source: Ref 15
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... Abstract Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Book Chapter
Classification and Selection of Cleaning Processes
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001221
EISBN: 978-1-62708-170-2
... compounds from magnetic particle and fluorescent penetrant inspection. The cleaning processes include emulsion cleaning, electrolytic alkaline cleaning, acid cleaning, solvent cleaning, vapor degreasing, alkaline cleaning, ultrasonic cleaning, and glass bead cleaning. The article provides guidelines...
Abstract
This article describes the basic attributes of the most widely used metal surface cleaning processes to remove pigmented drawing compounds, unpigmented oil and grease, chips, cutting fluids, polishing and buffing compounds, rust and scale from steel parts, and residues and lapping compounds from magnetic particle and fluorescent penetrant inspection. The cleaning processes include emulsion cleaning, electrolytic alkaline cleaning, acid cleaning, solvent cleaning, vapor degreasing, alkaline cleaning, ultrasonic cleaning, and glass bead cleaning. The article provides guidelines for choosing an appropriate process for particular applications and discusses eight well-known methods for determining the degree of cleanliness of the work surface.
Book Chapter
Cleaning of Steel for Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005777
EISBN: 978-1-62708-165-8
..., mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling...
Abstract
This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely, mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards that may be associated with each cleaning method and the general control measures to be used for each hazard are tabulated.
Book Chapter
Surface Cleaning
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003213
EISBN: 978-1-62708-199-3
... describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition. abrasive blast...
Abstract
Metal surfaces must often be cleaned before subsequent operations to remove unwanted substances such as pigmented drawing compounds, unpigmented oil and grease, chips and cutting fluids, polishing and buffing compounds, rust and scale, and miscellaneous contaminants. The article describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition.
Book Chapter
Surface Engineering of Refractory Metals and Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... Abstract This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Book Chapter
Chemical Cleaning and Cleaning-Related Corrosion of Process Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004143
EISBN: 978-1-62708-184-9
... material incompatibilities in a table. The article summarizes the uses of chemical cleaning solutions, including hydrochloric acid, phosphoric acid, and sulfamic acid, as well as the additives used to neutralize their impact on corrosion. It discusses the chemical cleaning procedures, including selection...
Abstract
This article describes the eight chemical cleaning methods, namely, circulation, fill and soak, cascade, foam, vapor-phase organic, steam-injected, on-line chemical, and mechanical cleaning. It presents information on deposit types, solvents used to remove them, and construction material incompatibilities in a table. The article summarizes the uses of chemical cleaning solutions, including hydrochloric acid, phosphoric acid, and sulfamic acid, as well as the additives used to neutralize their impact on corrosion. It discusses the chemical cleaning procedures, including selection of cleaning method and solvent, documentation of cleaning, and corrosion monitoring in chemical cleaning.
Image
Corrosion products on the intergranular fracture surface of an Nb-106 alloy...
Available to PurchasePublished: 01 January 1987
Fig. 58 Corrosion products on the intergranular fracture surface of an Nb-106 alloy. These corrosion products, which are residues from acid cleaning, contributed to failure by SCC. (L. Kashar, Scanning Electron Analysis Laboratories, Inc.)
More
Image
Corroded type 316 stainless steel pipe from a black liquor evaporator. Two ...
Available to PurchasePublished: 01 January 2003
Fig. 4 Corroded type 316 stainless steel pipe from a black liquor evaporator. Two forms of attack are evident: preferential attack of the weld metal ferrite, suffered during HCl acid cleaning, and less severe attack in the sensitized HAZ center. Source: Ref 5
More
Image
Fatigue fracture of AISI type 302 spring wire. Failure initiated at grain-b...
Available to PurchasePublished: 01 January 1987
Fig. 613 Fatigue fracture of AISI type 302 spring wire. Failure initiated at grain-boundary damage called “alligatoring,” a condition resulting from overetching during acid cleaning. Alligatoring is always detrimental to fatigue resistance and in extreme cases (such as this one) can lead
More
Image
(a) Longitudinal crack in a copper air-conditioning absorber tube. (b) Macr...
Available to PurchasePublished: 15 January 2021
Fig. 60 (a) Longitudinal crack in a copper air-conditioning absorber tube. (b) Macrograph of fine, irregular cracks observed in the outside-diameter surface of the copper air-conditioning absorber tube after a light acid cleaning to remove the corrosion product. Original magnification: 2×. (c
More
Image
Short-term and rapid overheating of a steel boiler tube (reheater, superhea...
Available to PurchasePublished: 01 January 2005
and erosion). Control: Operating procedures and system design are common causes of short-term overheating in boiler tubes. Plant records can help identify the cause, such as new burners with changed firing pattern, prior ineffective cleaning of fouled tubes with scales and debris left in place, recent acid
More
Book Chapter
Surface Engineering of Aluminum and Aluminum Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
..., and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating...
Abstract
Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing, and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating, electroless plating, porcelain enameling, and shot peening.
Image
Secondary electron SEM fractograph of stage 2 striation features in clad ty...
Available to PurchasePublished: 01 June 2024
Fig. 32 Secondary electron SEM fractograph of stage 2 striation features in clad type 7075-T6 aluminum alloy fuselage skin from a commercial airplane. The striations are due to a progressive crack advance with each ground-air-ground flight cycle. Pits are due to oxide removal in a chromic acid
More
Image
Longitudinal crack and intergranular stress-corrosion cracks in copper air-...
Available to PurchasePublished: 01 January 2002
Fig. 47 Longitudinal crack and intergranular stress-corrosion cracks in copper air-conditioning absorber tubes. (a) Longitudinal crack in one of the subject absorber tubes. 0.75×. (b) Macrograph of fine, irregular crack observed on the outer surface of the second absorber tube after light acid
More
Image
Longitudinal crack and intergranular stress-corrosion cracks in copper air-...
Available to PurchasePublished: 01 August 2018
light acid cleaning to remove the corrosion product. Original magnification: 2×. (c) Micrograph showing profiles of the primary crack and two fine secondary cracks at the outer surface of the absorber tube. The crack profiles are typical of stress-corrosion cracking, that is, intergranular and free
More
1