Skip Nav Destination
Close Modal
By
Howard R. Voorhees, Martin Prager
By
Dale B. Edwards, Anand R. Shah
By
Arun Sreeranganathan, Douglas L. Marriott
By
Daniel J. Benac, V.P. Swaminathan, Ph.D.
By
William R. Broughton, Antony S. Maxwell
By
S. Wu, Y.M. Zhu, A.J. Huang
By
Aleksander Zubelewicz, Semyon Vaynman, Srinivas T. Rao
By
Javier C. Cruz, Jeffrey A. Jansen
By
Richard H. Norris, Parmeet S. Grover, B. Carter Hamilton, Ashok Saxena
By
Michael Paloian
Search Results for
accelerated creep testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 430
Search Results for accelerated creep testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Assessment and Use of Creep-Rupture Properties
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003289
EISBN: 978-1-62708-176-4
... of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also...
Abstract
This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation of raw data. The article describes the various techniques employed for data handling of most materials and applications of engineering interest. These techniques include graphical methods, methods using time-temperature parameters, and methods used for estimations when data are sparse or hard to obtain. The article reviews the estimation of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also reviewed.
Book Chapter
Service Lifetime Assessment of Polymeric Products
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
... be insufficiently accurate. The bolting problem is the most commonly cited example. In contrast, the accelerated tests are designed to give comprehensive information on the creep strength of the material, which can then be used in many ways. It provides an alternative to the traditional creep test as a basis...
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Book Chapter
Elevated-Temperature Life Assessment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... phase transformations, stress accelerations approaching the yield strength of the material at the test temperature, increased oxidation of the test specimen due to temperature acceleration, and/or changes in the creep deformation mechanism. While it may not always be possible to eliminate these concerns...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Book Chapter
Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods. coating evaluation creep cavitation damage assessment elevated-temperature failure gas turbine blade hardness testing high-temperature crack growth methods life...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Accelerated Life Testing and Aging
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... between accelerated test temperature and service temperature increases. Fig. 3 Creep data obtained for polyoxymethylene at 50 °C (122 °F) and shifted to longer times at 23 °C (73 °F) using the Arrhenius equation are in good agreement with experimental data obtained at 23 °C. Source: Ref 11...
Abstract
Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002390
EISBN: 978-1-62708-193-1
... strain accumulation preceding fracture can vary widely with a variety of operational material parameters and with stress state. A common method of estimating the remaining creep life is to conduct accelerated rupture tests at temperatures well above the service temperature. The stress is kept...
Abstract
The approaches to spectrum life prediction in components can be classified into two types, namely, history-based methods, using the life-fraction rule or other damage rules, and postservice evaluation methods. This article discusses the variables affecting the material crack growth rate behavior and those essential elements in making spectrum crack growth life prediction. It provides information on life assessment for bulk creep damage.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components. creep creep rupture deformation elevated-temperature design high temperature...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
Book Chapter
Creep Performance of Additively Manufactured Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006964
EISBN: 978-1-62708-439-0
... m = ~0.4 to 0.55, where T is the testing temperature, and T m is the melting temperature) and high normalized tensile stress (i.e., σ/μ = ~10 −3 to 10 −2 , where σ is the testing stress, and μ is the shear modulus), creep deformation is normally dislocation-dominant. In such conditions...
Abstract
This article briefly introduces the concept of creep properties of additively manufactured (AM) alloys, with a focus on the effects of the characteristic microstructure of AM alloys on creep performance. Relevant postprocessing treatment also is discussed, in relation to improved creep performance based on the improvement of AM initial microstructure.
Book Chapter
Fatigue of Solders and Electronic Materials
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002413
EISBN: 978-1-62708-193-1
... solder joint reliability. These include the accelerated thermal cycling test and isothermal mechanical deflection system test. accelerated thermal cycling test isothermal fatigue isothermal fatigue life isothermal fatigue testing isothermal mechanical deflection system test solder joint...
Abstract
This article focuses on the isothermal fatigue of solder materials. It discusses the effect of strain range, frequency, hold time, temperature, and environment on isothermal fatigue life. The article provides information on various isothermal fatigue testing methods used to assess solder joint reliability. These include the accelerated thermal cycling test and isothermal mechanical deflection system test.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... to the questions. Figure 6 shows the finite-element simulation of the development of a crack-tip creep zone in a compact-type specimen of 2519 aluminum alloy (UNS A92519). In this simulation, the crack tip is advanced by releasing nodes at a rate measured in an actual test conducted under loading and temperature...
Abstract
The overarching goal of life-prediction research is to develop models for the various types of time dependencies in the crack-tip damage accumulation that occur in materials subjected to elevated temperatures. This article focuses on describing the models based on creep, oxidation kinetics, evolution of crack-tip stress fields due to creep, oxygen ingress, and change in the microstructure. It also provides a summary of creep-fatigue modeling approaches.
Book Chapter
Elevated-Temperature Properties of Ferritic Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... and 10,000 h at the indicated temperature for specimens of normalized 0.17% C steel exposed to the test temperature (without stress) for 83,000 h and for similar specimens not exposed to elevated temperature prior to testing Creep-Resistant Low-Alloy Steels Creep-resistant low-alloy steels usually...
Abstract
This article discusses some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. The selection of steels to be used at elevated temperatures generally involves compromise between the higher efficiencies obtained at higher operating temperatures and the cost of equipment, including materials, fabrication, replacement, and downtime costs. The article considers the low-alloy steels which are the creep-resistant steels with 0.5 to 1.0% Mo combined with 0.5 to 9.0% Cr and perhaps other carbide formers. The factors affecting mechanical properties of steels include the nature of strengthening mechanisms, the microstructure, the heat treatment, and the alloy composition. The article describes these factors, with particular emphasis on chromium-molybdenum steels used for elevated-temperature service. Although the mechanical properties establish the allowable design-stress levels, corrosion effects at elevated temperatures often set the maximum allowable service temperature of an alloy. The article also discusses the effects of alloying elements in annealed, normalized and tempered, and quenched and tempered steels.
Book Chapter
Creep and Creep-Rupture Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
... held constant at a given temperature. Stress relaxation testing is thus a complementary creep-test method that, in a short time, can generate creep-rate data as a function of stress covering five or more orders of magnitude in creep rate (see the section “Accelerated Testing” in the article “Stress...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Book Chapter
Environmental Stress Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... urethanes ( Ref 25 ). It appears likely that the rubber particles blunt the propagating crack, thus interfering with fracture extension. Chemical Factors Environmental stress cracking is analogous to creep rupture, with the cracking accelerated by a chemical agent. “As most fluids have a greater...
Abstract
While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand the circumstances surrounding the failure, a fractographic evaluation to assess the cracking, and analytical testing to evaluate the material, design, manufacturing, and environmental factors.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002387
EISBN: 978-1-62708-193-1
... Abstract This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties...
Abstract
This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties and creepcrack growth. Practical methods based on replication and parametric approaches are also discussed.
Book Chapter
Elevated-Temperature Crack Growth
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002389
EISBN: 978-1-62708-193-1
...., tearing) may influence the creep-fatigue damage process in positive R load-controlled tests. Therefore, the apparent accelerations in crack growth rate associated with the hold time (creep damage) may be a result of, for example, stable tearing effects due to large deformations caused by ratcheting...
Abstract
This article describes the concepts for characterizing and predicting elevated-temperature crack growth in structural materials. It discusses both creep and creep-fatigue crack growth and focuses mainly on creep crack growth tests that are carried out in accordance with ASTM E 1457. The article provides information on typical test procedures and equipment used for these tests. It concludes with information on crack growth correlations.
Book Chapter
Failures from Various Mechanisms and Related Environmental Factors
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... and destructive testing, chemical analysis Loading direction can show failure was secondary Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) Load exceeded the dynamic strength of the part Check for proper alloy and processing, as well as proper toughness, grain...
Abstract
Analysis of the failure of a metal structure or part usually requires identification of the type of failure. Failure can occur by one or more of several mechanisms, including surface damage (such as corrosion or wear), elastic or plastic distortion, and fracture. This leads to a wide range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a macroscopic scale as ductile fractures, brittle fractures, fatigue fractures, and fractures resulting from the combined effects of stress and environment.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004170
EISBN: 978-1-62708-184-9
... with information corrosion tests. corrosion corrosion control corrosion tests fretting galvanic corrosion pitting corrosion stress-corrosion cracking uniform corrosion microelectronics creep corrosion dendrite growth whisker growth moisture retention TREMENDOUS TECHNOLOGICAL ADVANCES have...
Abstract
This article discusses the influence of the materials, design, package type, and environment on corrosion in microelectronics. It describes the common sources and mechanisms of corrosion in microelectronics, including anodic, cathodic, and electrolytic reactions resulting in uniform corrosion, galvanic corrosion, pitting corrosion, creep corrosion, dendrite growth, fretting, stress-corrosion cracking, and whisker growth. The article presents effective measures for minimizing the moisture retention in hermetic packages and/or moisture ingress in plastic packages. It concludes with information corrosion tests.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003266
EISBN: 978-1-62708-176-4
... Abstract This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high...
Abstract
This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high-temperature structural alloys. The article discusses hot tension testing and measurements of temperature and strain in the hot tension testing. It also provides an overview of hot compression testing.
Book Chapter
Avoiding Plastic Product Failure by Proper Plastic Selection and Design
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
... to obtain and are not often published by resin suppliers. Fortunately, many independent testing facilities test a resin by applying accelerated creep tests such as dynamic mechanical analysis, thus reducing 5 to 10 years to a few days of testing. This accelerated and very accurate creep test method has...
Abstract
Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all of these parameters are comprehensively examined during the design process. This article focuses on all of these factors, except processing-related failures, which are outside the design and engineering domain. It is dedicated to the identification and avoidance of common problems associated with the selection and designing of plastic parts. The article provides information on the material-related design criteria that depend on the applications, environmental conditions of use, and performance requirements. It discusses physical properties of plastics based on their relevance to real-world environmental conditions. The most-common design problems related to design considerations are also covered.
1