Skip Nav Destination
Close Modal
Search Results for
absorption spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 258 Search Results for
absorption spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006653
EISBN: 978-1-62708-213-6
... Abstract This article focuses on some of the factors pertinent to atomic absorption spectroscopy (AAS). It begins by describing the working principle, critical components, and construction of flame atomic absorption instrumentation. This is followed by sections discussing various types...
Abstract
This article focuses on some of the factors pertinent to atomic absorption spectroscopy (AAS). It begins by describing the working principle, critical components, and construction of flame atomic absorption instrumentation. This is followed by sections discussing various types of interferences in AAS, namely vaporization, ionization, matrix interferences, and background correction. Some of the methods for the analysis of microliter-sized samples and methods of standard additions to the sample solution for generating calibration standards are then reviewed. The article concludes with a section on processes involved in matrix matching.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001731
EISBN: 978-1-62708-178-8
... Abstract Ultraviolet/visible (UV/VIS) absorption spectroscopy is a powerful yet cost-effective tool that is widely used to identify organic compounds and to measure the concentration of principal and trace constituents in liquid, gas, and solid test samples. This article emphasizes...
Abstract
Ultraviolet/visible (UV/VIS) absorption spectroscopy is a powerful yet cost-effective tool that is widely used to identify organic compounds and to measure the concentration of principal and trace constituents in liquid, gas, and solid test samples. This article emphasizes the quantitative analysis of elements in metals and metal-bearing ores. The instrumentation required for such applications consists of a light source, a filter or wavelength selector, and some type of visual or automated sensing mechanism. The article examines common sensing options and provides helpful information on how to set up and run a variety of UV/VIS absorption tests.
Image
in Characterization of Plastics in Failure Analysis
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 5 Typical energy-dispersive x-ray spectroscopy spectrum showing absorption features indicative of unique elements and the quantitation of those elements. cps, counts per second
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis. corrosion corrosion inhibition...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
..., such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed. atomic absorption spectroscopy atomic fluorescence spectrometry Auger electron spectroscopy bulk analysis electron...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001735
EISBN: 978-1-62708-178-8
... techniques of IR spectroscopy, namely, attenuated total reflectance spectroscopy, diffuse reflectance spectroscopy, infrared reflection-absorption spectroscopy, emission spectroscopy, and photoacoustic spectroscopy, and chromatographic techniques. Explaining the qualitative analysis of IR spectroscopy...
Abstract
Infrared (IR) spectroscopy is a useful technique for characterizing materials and providing information on the molecular structure, dynamics, and environment of a compound. This article provides the basic principles and instrumentation of IR spectroscopy. It discusses the sampling techniques of IR spectroscopy, namely, attenuated total reflectance spectroscopy, diffuse reflectance spectroscopy, infrared reflection-absorption spectroscopy, emission spectroscopy, and photoacoustic spectroscopy, and chromatographic techniques. Explaining the qualitative analysis of IR spectroscopy, the article provides information on spectral absorbance-subtraction, analysis of components in spectral matrix mixture, and determination of exact peak location of broad profiles. It discusses the quantitative analysis that mainly includes Beer's law for single compound in single wave number. The article also exemplifies the applications of IR spectroscopy.
Image
Published: 15 December 2019
Fig. 10 Spectrum of bulk ditallowdimethylammonium chloride (DTDMAC) and DTDMAC adsorbed on metallic and nonmetallic substrates. A, attenuated total reflectance spectrum of bulk DTDMAC; B, infrared reflection-absorption spectroscopy spectrum of DTDMAC adsorbed on a 2 nm thick film of cellulose
More
Image
in Introduction to Characterization of Organic Solids and Organic Liquids
> Materials Characterization
Published: 15 December 2019
absorption spectroscopy; XRS: x-ray spectrometry. (a) Limited number of elements or groups. (b) Volatile liquids, solids, or components
More
Image
in Introduction to Characterization of Organic Solids and Organic Liquids
> Materials Characterization
Published: 15 December 2019
spectroscopy; TEM: transmission electron microscopy; UV/VIS: ultraviolet/visible absorption spectroscopy; XPS: x-ray photoelectron spectroscopy; XRD: x-ray diffraction; XRS: x-ray spectrometry. (a) Limited number of elements or groups. (b) Volatile liquids, solids, or components. (c) Under special conditions
More
Image
Published: 15 December 2019
electron microscopy; SIMS: secondary ion mass spectroscopy; TEM: transmission electron microscopy; UV/VIS: ultraviolet/visible absorption spectroscopy; XPS: x-ray photoelectron spectroscopy; XRD: x-ray diffraction; XRS: x-ray spectrometry. (a) Limited number of elements or groups. (b) Volatile liquids
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... Acronyms: Techniques APM atom probe microanalysis AAS atomic absorption spectrometry AEM analytical electron microscopy AES Auger electron spectroscopy; atomic emission spectrometry AFS atomic fluorescence spectrometry ATEM analytical transmission...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... metallography; RS, Raman spectroscopy; SAXS, small-angle x-ray scattering; SEM, scanning electron microscopy; SIMS, secondary ion mass spectroscopy; TEM, transmission electron microscopy; UV/VIS, ultraviolet/visible absorption spectroscopy; XPS, x-ray photoelectron spectroscopy; XRD, x-ray diffraction; XRS, x...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
... Inorganic solids: metals, alloys, semiconductors Wet analytical chemistry, electrochemistry, ultraviolet/visible absorption spectroscopy, and molecular fluorescence spectroscopy can generally be adapted to perform many of the bulk analyses listed. ● = generally usable; N or † = limited number of elements...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006662
EISBN: 978-1-62708-213-6
... of the infrared wavelength. Techniques such as attenuated total reflectance, diffuse reflectance, specular reflectance, reflection-absorption spectroscopy, and photoacoustic spectroscopy have recently become more common. This article discusses the sampling techniques, applications, and the molecular structure...
Abstract
Infrared (IR) spectra have been produced by transmission, that is, transmitting light through the sample, measuring the light intensity at the detector, and comparing it to the intensity obtained with no sample in the beam, all as a function of the infrared wavelength. This article discusses the sampling techniques and applications of IR spectra as well as the molecular structure information it can provide. The discussion begins with a description of the general principle of IR spectroscopy. This is followed by a section on commercial IR instruments. Sampling techniques and accessories necessary in obtaining the infrared spectrum of a material are then discussed. The article presents various techniques and methods involved in IR qualitative analysis and quantitative analysis. It ends with a few examples of the applications of IR spectroscopy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006645
EISBN: 978-1-62708-213-6
... and processes involved in sample preparation for XRF analysis are also included. The article further provides information on the practical procedure for and the applications of WDS and EDS qualitative and quantitative analyses. X-ray absorption X-ray emission X-ray spectroscopy X-Ray Radiation X-ray...
Abstract
This article provides a detailed account of X-ray spectroscopy used for elemental identification and determination. It begins with an overview of the operating principles of X-ray fluorescence (XRF) spectrometer, as well as a comparison of the operating principles of wavelength-dispersive spectrometer (WDS) and energy-dispersive spectrometer (EDS). This is followed by a discussion on the mechanism and effects of X-ray radiation, X-ray emission, and X-ray absorption. The article then discusses components used, operation, and applications of WDS and EDS. Some of the factors and processes involved in sample preparation for XRF analysis are also included. The article further provides information on the practical procedure for and the applications of WDS and EDS qualitative and quantitative analyses.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... • … • … • … … • … … … … … • … Transmission electron microscopy S … C … N N … … • … N N … C • Ultraviolet/visible absorption spectroscopy D, • D, • D,• … D,• D,• D,• D,• … … D,• D,• D,• … … X-ray diffraction … … C … C C C,S C … … C C … C … X-ray photoelectron spectroscopy • N S...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006669
EISBN: 978-1-62708-213-6
...” are the articles “ Optical Emission Spectroscopy ,” “Atomic Absorption Spectroscopy,” and “Infrared Spectroscopy,” to name a few. Each article begins with a summary of general uses, applications, limitations, sample requirements, and capabilities of related techniques, which is designed to give the reader...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... spectrometer provides for lower detection limits, typically in the parts per billion range. Atomic Absorption Spectroscopy (AAS) Atomic absorption spectroscopy (AAS) operates on the same atomic principle as OES, but it measures the intensity of light absorbed by the liquid sample aspirated into a flame...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001732
EISBN: 978-1-62708-178-8
... spectral dimension available in absorption spectroscopy. Peaks due to scattered light appear centered around λ ex = λ em and may conceal fluorescence emission. Scattered light can be reduced by using polarizers, one in the emission beam and one in the excitation beam, positioned perpendicular to each...
Abstract
This article provides an introduction to the molecular fluorescence spectroscopy, and discusses the theory of fluorescence and its application to chemical analysis. It provides information on fluorescence that occurs in organic compounds and inorganic atoms and molecules. The article describes the instruments used in the spectroscopy, namely, radiation sources, sample holders, wavelength selectors, detectors, computers, and ratiometric instruments. The practical considerations include solvent effects, corrected spectra, wavelength calibration, temperature, and scattered light. The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy.
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
.... ductivity) and (2) the concentration or specific wavelengths or energies are pref- See also dc intermittent noncapacitive mass of the substance being measured. erentially absorbed, forming the basis of arc. The curve is generated by measuring the absorption spectroscopy. responses for standards of known...
1