Skip Nav Destination
Close Modal
By
Jeffrey A. Hawk, Rick D. Wilson, Daniel R. Danks, Matthew T. Kiser
By
W. Theisen, A. Röttger
Search Results for
abrasive wear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1004
Search Results for abrasive wear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Abrasive Wear Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006382
EISBN: 978-1-62708-192-4
... Abstract Abrasive wear is a surface-damage process with material loss caused by hard asperities or abrasive particles occurring when two surfaces are sliding against each other. There are two types of abrasive wear: two-body abrasion and three-body abrasion. This article discusses the abrasive...
Abstract
Abrasive wear is a surface-damage process with material loss caused by hard asperities or abrasive particles occurring when two surfaces are sliding against each other. There are two types of abrasive wear: two-body abrasion and three-body abrasion. This article discusses the abrasive wear mechanism in ductile materials and commonly used testers for evaluating the resistance of materials to abrasive wear. The testers include pin-on-disk, block-on-ring, block-on-drum, and dry sand/rubber wheel abrasion tester. The article reviews the abrasion resistance of metallic materials, ceramic materials, and polymeric materials. It discusses factors that influence abrasive wear, including the environment, hardness, toughness, microstructure, and lubrication.
Book Chapter
Abrasive Wear Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... Abstract Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003283
EISBN: 978-1-62708-176-4
... Abstract The article provides a discussion on the parameters influencing abrasive wear and the elements and standards of abrasion wear tests. It emphasizes the general test procedures, advantages, and limitations of various types of abrasive wear testing. Wear testing for scratch wear, dry...
Abstract
The article provides a discussion on the parameters influencing abrasive wear and the elements and standards of abrasion wear tests. It emphasizes the general test procedures, advantages, and limitations of various types of abrasive wear testing. Wear testing for scratch wear, dry abrasion against fixed particles, dry abrasion against loose particles, wet abrasion against fixed or loose particles, gouging-abrasion, small particle erosion, impact abrasion, slurry abrasion, and microabrasion, are also discussed.
Book Chapter
Carbide- and Boride-Based Thick Coatings for Abrasive Wear-Protection Applications
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006364
EISBN: 978-1-62708-192-4
... Abstract This article provides a brief introduction to abrasive wear-resistant coating materials that contain a large amount of hard phases, such as borides, carbides, or carboborides. It describes some of the commonly used methods of producing thick wear-resistant coatings. The article also...
Abstract
This article provides a brief introduction to abrasive wear-resistant coating materials that contain a large amount of hard phases, such as borides, carbides, or carboborides. It describes some of the commonly used methods of producing thick wear-resistant coatings. The article also provides information on metal-matrix composites and cemented carbides. The three base-alloying concepts, including cobalt-, iron-, and nickel-base alloys used for wear-protection applications, are also described. The article compares the tribomechanical properties of the materials in a qualitative manner, thus allowing a rough materials selection for practitioners. It presents a brief discussion on hot isostatic pressing (HIP) cladding, sinter cladding, and manufacturing of thick wear-resistant coatings by extrusion or ring rolling. The article also discusses the processing sequence of thick wear-resistant coatings, namely, compound casting, deposition welding, and thermal spraying.
Image
Abrasive wear model: (a) abrasive wear by a conical hard particle (indenter...
Available to PurchasePublished: 31 December 2017
Fig. 20 Abrasive wear model: (a) abrasive wear by a conical hard particle (indenter), (b) roughness pattern on die bearing. Source: Ref 28 . Reprinted with permission from the Proceedings of the Eighth International Aluminum Extrusion Technology Seminar , published by the Aluminum Extruders
More
Image
Abrasive wear volume at various loads and SiC abrasive papers as a function...
Available to PurchasePublished: 01 January 2002
Fig. 5 Abrasive wear volume at various loads and SiC abrasive papers as a function of volume fraction of short glass fibers (GF) in PEI. Speed 5 cm/s in single pass condition; distance slid 3.26 m. (a) 120 grade, grit size ≃ 118 μm. (b) 80 grade, grit size ≃ 175 μm. Source: Ref 29
More
Image
Effect of abrasive hardness relative to material hardness on abrasive wear,...
Available to PurchasePublished: 01 January 2003
Fig. 3 Effect of abrasive hardness relative to material hardness on abrasive wear, showing the wear transition as wear surface becomes as hard as the abrasive
More
Image
Published: 31 December 2017
Image
(a) Schematic of standard abrasive wear test, ASTM G65. (b) Wear scar on ty...
Available to PurchasePublished: 31 December 2017
Fig. 1 (a) Schematic of standard abrasive wear test, ASTM G65. (b) Wear scar on typical specimen
More
Image
Abrasive wear rates in gray iron as a function of microstructure arising fr...
Available to PurchasePublished: 01 January 1994
Fig. 12 Abrasive wear rates in gray iron as a function of microstructure arising from various laser-hardening treatments. Source: Ref 13
More
Image
Effect of MC volume fraction on the abrasive wear of PM HIP steels on SiC p...
Available to PurchasePublished: 30 September 2015
Image
Published: 30 September 2015
Fig. 33 Influence of average carbide size on the abrasive wear on SiO 2 paper. Details are given in Table 12 .
More
Image
Effect of matrix hardness on abrasive wear on flint paper for the steels in...
Available to PurchasePublished: 30 September 2015
Image
Published: 30 September 2015
Image
Abrasive wear in a grinding wheel due to attrition and fracture. (a) Attrit...
Available to PurchasePublished: 01 January 1989
Fig. 4 Abrasive wear in a grinding wheel due to attrition and fracture. (a) Attrition deteriorates abrasive grains by the loss of fine particles. This flattens and dulls the edges. (b) Fracture deteriorates abrasive grains by the breaking away of relatively large pieces of abrasive crystals
More
Image
Common failure mechanisms for forging dies. 1, abrasive wear; 2, thermal fa...
Available to PurchasePublished: 01 January 2005
Fig. 9 Common failure mechanisms for forging dies. 1, abrasive wear; 2, thermal fatigue; 3, mechanical fatigue; 4, plastic deformation. Source: Ref 6
More
Image
Common failure mechanisms for forging dies. 1, abrasive wear; 2, thermal fa...
Available to PurchasePublished: 01 January 2005
Fig. 3 Common failure mechanisms for forging dies. 1, abrasive wear; 2, thermal fatigue; 3, mechanical fatigue; 4, plastic deformation. Source: Ref 2
More
Image
Examples of abrasive wear with varying degrees of thermal-fatigue cracking ...
Available to PurchasePublished: 01 January 2005
Fig. 4 Examples of abrasive wear with varying degrees of thermal-fatigue cracking in conventional closed-die forging applications. (a) Abrasive wear with some indication of thermal-fatigue cracking in top blocker punch. (b) Abrasive wear with more prominent radial lines indicative of thermal
More
Image
Abrasive wear resistance versus fracture toughness for a 2.9% C, 19% Cr, 2....
Available to PurchasePublished: 01 October 2014
Fig. 6 Abrasive wear resistance versus fracture toughness for a 2.9% C, 19% Cr, 2.4% Mo, 0.9% Cu iron subjected to various heat treatments. Wear resistance expressed as the reciprocal of volume loss (Δ V ). Source: Ref 2
More
1