Skip Nav Destination
Close Modal
Search Results for
abrasive waterjet nozzle
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
abrasive waterjet nozzle
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 16 Abrasive waterjet nozzle assembly (a) mounted on robot arm to interface with robot. (b) Closeup of nozzle. Black air line on top is connected to electric solenoid located on robot arm. High-pressure water line attaches at center-left of nozzle and flexes as robot arm moves and rotates
More
Image
Published: 01 January 1989
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002158
EISBN: 978-1-62708-188-7
... Abstract This article discusses the functions of the major components of a waterjet machining system. These include hydraulic unit, intensifier, accumulator, filters, water transmission lines, on/off valve, waterjet nozzles, abrasive waterjet nozzle, waterjet catchers, and fluid additives...
Abstract
This article discusses the functions of the major components of a waterjet machining system. These include hydraulic unit, intensifier, accumulator, filters, water transmission lines, on/off valve, waterjet nozzles, abrasive waterjet nozzle, waterjet catchers, and fluid additives. The article reviews several variables that influence the WJM process, such as pressure, flow and nozzle diameter, stand-off distance, traverse rate, and type and size of abrasive. Advantages and disadvantages of waterjet and abrasive waterjet cutting are also discussed. The article describes the applications of waterjet and abrasive waterjet machining.
Image
Published: 01 January 2006
Fig. 11 Bending of kerf in a Plexiglas workpiece subjected to excessively high traverse cutting speeds. The portion at the bottom was pierced before cutting, and this caused a section of the hole to be eroded away as it was subsequently cut by the abrasive waterjet nozzle. Courtesy
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005107
EISBN: 978-1-62708-186-3
... by the waterjet) on the workpiece. Depending on the properties of the material, cutting occurs by erosion, shearing, failure under rapidly changing localized stress fields, or micromachining effects. A small abrasive jet nozzle is used ( Fig. 1 ). Water is pressurized to 414 MPa (60 ksi) and expelled through...
Abstract
This article provides a detailed account of the process development, cutting principle, and components of the abrasive waterjet cutting process. The advantages of abrasive waterjet machining are summarized. The article also discusses the factors affecting the cut quality, and the applications and limitations of abrasive waterjet cutting.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006024
EISBN: 978-1-62708-172-6
... as the removal medium, while the abrasive etches the surfaces and accelerates the cleaning and roughening process. Fig. 33 Waterjetting with abrasive induction Fig. 34 Diagram of water induction nozzle for wet abrasive blast cleaning Fig. 35 Water collar/ring Any surface...
Abstract
This article reviews the steps involved in presurface-preparation inspection: substrate replacement; removal of weld spatter, rounding of sharp edges, and grinding of slivers/laminations; and removal of rust scale, grease, oil, and chemical (soluble salt) contamination. It focuses on surface preparation methods that range from simple solvent cleaning to hand and power tool cleaning, dry and wet abrasive blast cleaning, centrifugal wheel blast cleaning, chemical stripping, and waterjetting for the application of the coating system. In addition, the article provides a description of the Society for Protective Coatings' (SSPC) standards and NACE International standards as well as the International Organization for Standardization (ISO) standards and International Concrete Repair Institute (ICRI) guidelines for surface cleanliness.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003424
EISBN: 978-1-62708-195-5
..., the operators must be properly trained regarding handling of these costly tools. Rigid setups are also needed with polycrystalline diamond tools to preclude edge chipping or breakage. Trimming Abrasive waterjet is the preferred method for trimming carbon/epoxy composites. Cut quality and trim accuracy...
Abstract
This article describes the machining operations of carbon fiber-reinforced epoxy, or carbon/epoxy thermoset composite materials, such as drilling, reaming, routing, trimming, end milling, slot milling, and facing. It reviews cutting tools for machining, including solid carbide, diamond plated, brazed diamond, diamond coated carbide, and polycrystalline cutting tools. The article also describes cutting tool materials that are used for peripheral milling, face milling, and the trimming of polymer-matrix composites.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002194
EISBN: 978-1-62708-188-7
... tapers, relief angles, and other complex geometries. Abrasive Waterjet Cutting In cutting aluminum-SiC MMCs with this process, the kerf is usually 0.025 mm (0.001 in.) greater than the diameter of the nozzle orifice. Excellent cut surfaces have been obtained with a workpiece 12.5 mm ( 1 2...
Abstract
This article presents general guidelines for machining metal matrix composites (MMC) and honeycomb structures. It provides guidelines for machining of specific MMCs, namely, aluminum-boron, aluminum-SiC, aluminum-Al 2 O 3 , and titanium-SiC MMCs. In addition, the article discusses the various parameters influencing drilling of dissimilar-material laminates.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006335
EISBN: 978-1-62708-179-5
... degree of smoothness or roughness and requirement for color and gloss can be filled by organic coatings. The article describes abrasive blast cleaning, abrasive waterjet cleaning and finishing, vibratory finishing, barrel finishing, and shot peening for processing iron castings. abrasive blast...
Abstract
Coating of cast irons is done to improve appearance and resistance to degradation due to corrosion, erosion, and wear. This article describes inorganic coating methods commonly applied to cast irons. The coating methods include plating, hot dip coating, conversion coating, diffusion coating, cladding, porcelain enameling, and thermal spray. Organic coatings have a wide variety of properties, but their primary use is for corrosion resistance combined with a pleasing colored appearance. The article discusses the various types of organic coatings applied to cast irons. Practically any degree of smoothness or roughness and requirement for color and gloss can be filled by organic coatings. The article describes abrasive blast cleaning, abrasive waterjet cleaning and finishing, vibratory finishing, barrel finishing, and shot peening for processing iron castings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003694
EISBN: 978-1-62708-182-5
... for Power- and Hand-Tool Cleaned Steel.” (c) SSPC-VIS 4/NACE VIS 7, “Guide and Reference Photographs for Steel Surfaces Prepared by Waterjetting.” (d) SSPC-VIS 5/NACE VIS 9, “Guide and Reference Photographs for Steel Surfaces Prepared by Wet Abrasive Blast Cleaning” Although there are other...
Abstract
This article provides information on the factors influencing the selection of the proper corrosion-resistant coating system. It focuses on the proper execution of surface preparation and the available surface preparation methods. The preparation process includes the removal of visible contaminants, removal of invisible contaminants, and roughening of the surface. Solvent or chemical washing, steam cleaning, hand tool cleaning, power tool cleaning, water blasting, and abrasive blast cleaning, are some preparation methods discussed. The article describes the most common application techniques of coating as well as the equipment used. An overview of some of the most common coating inspection points and inspection equipment is also provided.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining. abrasive machining ceramics...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006061
EISBN: 978-1-62708-172-6
...—SSPC-SP 14 (i) 200 Brush-off blast cleaning—SSPC-SP 7 (j) 350 Wet abrasive blast cleaning (abrasive injection or water collar) 60 Water jetting—SSPC-SP 12(WJ-1) (k) 70 Sponge media blast cleaning—SSPC-SP 10 (g) 70 Abrasive blast cleaning of concrete (by nozzles) 80 Abrasive...
Abstract
This article provides an insight into the cost estimation of painting projects for both contractors and others. The cost estimating methods include benchmarking, unit price estimating, developed pricing, market pricing, and critical path scheduling. The first step in developing an accurate estimate for an industrial painting contract is determining the scope of work. The article describes the method of calculating quantities of materials and labor, surface area takeoff, and equipment costs. It concludes by listing the forgotten costs and presenting information on coating condition assessment and determining selling cost.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006014
EISBN: 978-1-62708-172-6
...) that SSPC-SP 7 does not. These precautions include blasting with softer abrasives (aluminum/magnesium silicate, corn cobs, walnut shells, limestone, or some mineral sands), decreasing blast air nozzle pressures, and increasing stand-off distance from the work surface to avoid damaging the protective zinc...
Abstract
This article reviews the various substrates for coatings, namely, steel, cast iron, galvanized steel, aluminum, stainless steel, nonferrous metals, concrete, and wood. General guidance for surface preparation and coating selection is provided along with unique requirements for the particular substrate(s).
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006064
EISBN: 978-1-62708-175-7
... for firearms. Binderless nanograined carbide compositions are used for extremely high wear resistance in abrasive waterjet nozzles. Ordnance applications take advantage of the high hardness and stiffness of cemented carbides. Low-cobalt compositions and binderless carbides are of interest in ordnance...
Abstract
Cemented carbide is, in its simplest form, a metal-matrix composite of tungsten carbide particles in a cobalt matrix. This article describes the microstructure, physical, and mechanical properties of cemented carbides. The properties discussed include thermal conductivity, magnetic properties, corrosion resistance, hardness, fracture toughness, wear resistance, and thermal shock resistance. The article concludes with information on the applications, grade classification, and selection of grades.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... commonly used method for cleaning cast irons), abrasive waterjet cleaning and finishing, vibratory finishing, barrel finishing, and shot peening. Blast Cleaning Blast cleaning of castings is a process in which abrasive particles are propelled at high velocity to impact the casting surface...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006062
EISBN: 978-1-62708-172-6
... is done with abrasive blasting, the mill representative should inform the contractor of any mill requirements or limitations regarding the type of abrasive medium used. Vacuum blasting—in which the space around the blasting nozzle is kept at a vacuum to collect the abrasive and debris—can be used...
Abstract
Maintenance coating is an important part of any meaningful asset-preservation strategy in facilities producing pulp and paper and other chemicals. This article discusses maintenance coating for carbon steel structures and process equipment exposed to normal external pulp and paper mill atmospheric conditions. The important requirements and standards for surface preparation are emphasized and common issues encountered in maintenance coating projects are described.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006492
EISBN: 978-1-62708-207-5
... and initiate galvanic corrosion. Repair contractors sometimes perform pencil blast cleaning ( Fig. 12 ), which uses a small nozzle (typically 0.25 to 1.5 mm, or 0.010 to 0.060 in., diameter) to propel a fine stream of abrasive to a small part or localized area on a larger part. The abrasive medium size...
Abstract
Although aluminum alloys are inherently corrosion resistant, there are many operating environments where they require additional protection. This article describes the conditions under which aluminum is prone to corrode and explains how to prevent it through the addition of conversion coatings and paints. It addresses some of the more common corrosion mechanisms, including corrosion driven by pH extremes, pitting corrosion, crevice corrosion, galvanic corrosion, and filiform corrosion. The article also describes in-plant as well as field application procedures for cleaning and coating, and discusses the advantages and limitations of the various materials and chemicals used.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005106
EISBN: 978-1-62708-186-3
... systems. Technical features of laser cutting are compared with other methods of cutting in Table 1 ( Ref 1 ). Typical technical features of cutting processes Table 1 Typical technical features of cutting processes Laser Abrasive waterjet Plasma arc Oxyfuel Materials All homogeneous...
Abstract
Cutting with lasers is accomplished with carbon dioxide (CO 2 ) and neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers. This article provides a description of the process variables and principles of laser cutting. It discusses the three basic types of CO 2 gas lasers, namely, slow axial flow, transverse flow, and fast axial flow and reviews the applications of Nd:YAG laser. The article describes the basic parameters in the laser-cutting process: beam quality, power, travel speed, nozzles design, and focal-point position. Several material conditions that affect the quality of the laser cut are also discussed. The article provides information on the basic laser-cutting system and its optional equipment. A general description of how well each metal group can be cut is also provided.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... Abstract Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive...
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
... of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc...
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
1